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CVNG 3004 STRUCTURAL DYNAMICS
By R. Clarke
Introduction

The practice of structural dynamics is essentially the formulation then solution of equations of different
types applicable to different conditions. A new student of the topic typically finds themselves a bit
overwhelmed and the significance of the different aspects of the topic quickly becomes difficult to grasp.
However, it is this significance, which arises when the understanding of the subtopics are synthesized into
a whole, that is most required for effective modeling and analysis.

The aim of this introduction is to put the various parts of structural dynamics into perspective — a bird’s
eye view, which may help the student more easily develop a feel for the relative significance of the

various subtopics of structural dynamics.

The Critical Phenomena of Structural Dynamics

Input = F(t) > System ——»| Output = DAF x F(t)

Figure 1

Consider a physical system — a structural system, a mechanical system, an electrical circuit, etc. At
some point or points in the system, a time-varying excitation is imposed as an input, and we desire
to know how the system will respond, as output. Dynamics, or Vibration Theory, enables us to
determine the response and is characterized by just two things — the phenomena are functions of
time, and are such that the response is magnified or amplified relative to the input. That is, if the
input is F(t), the output is DAF x F(t), where DAF is the dynamic amplification factor. This
amplification takes place because the output actually reinforces the input so therefore, dynamics is
a feedback phenomenon.

Structural dynamics is the application of Vibration Theory to structures typically encountered in civil
engineering, and the amplification is due to the generation of inertia forces that act on the system,
as an additional force. Hence in structural dynamics the dependant variable is with respect to the
equations of motion associated with Newton’s Second Law. Therefore, the variables are
displacement, x(t), velocity (i.e dx/dt), and acceleration (i.e. d’x/dt’). The input is typically a load or
force F(t), and the output is the displacement, x(t), from which the other response quantities of
interest are determined (i.e velocity, acceleration, inertia force, etc).

This also applies to Mechanical Engineering but in this arena, the structure is a machine or part of a
machine. Vibration Theory also applies to certain aspects of Electrical Engineering, so some of the

terminology of structural dynamics originates from this field since the governing equations are the

same.

Structural Dynamics in Civil Engineering Design

Structural dynamics is encountered in civil engineering as the time-varying loads imposed on the
various structures common to civil engineering, and the resulting behavior of those structures.

In general, structural design can be defined as the control of phenomena within the structural
system by determining the values of its appropriate properties, such that the response of the system



is acceptable. Acceptability is in terms of: (1) the safety of the structure against collapse, and (2) the
comfort of the user during the service life of the structure. That is, the collapse or ultimate limit
state, and the serviceability limit state, respectively.

Regarding the ultimate limit state, the structure is economically safe if the stress demands on the
structure are just less than the capacities of the structure. The stress demands are typically in terms
of the stress resultants within the system — the moments (M), shears (V), axial forces (P), and torsion
(T), collectively called the design actions.

In structures under dynamic loading, the stresses are amplified when its ratio of its mass to stiffness
(i.e. M/K) is within a certain range for a given the characteristics of the load. The designer has the
following options to control the stress to acceptable levels. (1) Accept the amplified load and
proportion the structure so that it has the capacity to resist it. (2) Alter the M/K ratio so that the
response is not significantly amplified. (3) Separate the structure from the source of the dynamic
load. Lastly, (4) add devices to the structure to absorb the force in those devices instead of within
the structural elements.

Regarding the serviceability limit state, the following are generally undesirable. The vibration of a
floor or deck as someone or something moves on it, for example, in buildings and bridges. In
buildings the movement can be due to a person walking, a group of persons dancing, a crowd
jumping as in a stadium, or a machine located on the same floor. The feeling of nausea when a
structure sways under wind loading is also undesirable and occurs when the structure is in a
particular range of acceleration. If the structure vibrates too much in the event of an impact, say
due to the collision of a vehicle, or a blast, this can also be disturbing to the occupants, and cause
the belief that the building is unsafe, hence affecting their ability to function normally. To avoid
such occurrences, the designer can use the same approaches described above for the ultimate limit
state.

The following graphically describes the various types of dynamic loading generally found in civil
engineering. For each type of dynamic loading, graphs of a different shape are possible.
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Figure 2e. Spectrum

Examples of these types of dynamic loading are as follows. Periodic harmonic long duration loading
(usually just called “harmonic”) can be due to machinery on a floor. Periodic non-harmonic long
duration loading (usually just called “periodic”) can be due to a crowd jumping at a stadium during a
game. Non-periodic long duration loading (usually called “non-periodic”) can be due to an
earthquake recording at a specific point for a specific earthquake. Non-periodic short duration
loading (usually called “transient”), can be due to a wave crashing against a sea wall, or a blast, or a
collision.

Figures 2a to 2d describe deterministic loadings. That is, the value of the load is exactly known at a
point in time, t. However, there are other situations where at any time, t, it is not possible to know
the exact value of the load as there is a range of possible values at time, t. Such a phenomenon is
called a random process, or a stochastic process, and statistics/probability theory is used in order to
quantitatively describe the phenomenon.

An example of a random process is earthquake loading on a structure. We can obtain a recording of,
say, the acceleration of a structure during an earthquake, such as shown in Figure 2c. However, for
the same structure but at a different point, the graph will not be the same. Likewise, a point located
on another identical structure due to the same earthquake, will result in yet another graph. And if
another earthquake occurs, then another set of different graphs will be obtained. The engineer
must therefore consider the loading as inherently random. To get design information, the engineer
considers a suitably large collection of recordings, called an ensemble, and examines their statistical
properties.

If for all the recordings, at time t, the statistical properties of the loading are the same as at any
other time t, the phenomenon is called a stationary process. An ergodic process is a special case of
a stationary process. For an ergodic process, not only are the statistical properties the same at each
time t, but for each recording the statistical properties of the loading are the same. For random
processes the loading is typically described using a spectrum which, as shown in Figure 2e, has
frequency on the x-axis rather than time.

Dynamic Equilibrium

In every problem of structural dynamics, regardless of the complexity of the model, the principal
fact is that the forces involved are in equilibrium at any time, t. This is called D’Almbert’s Principle of
Dynamic Equilibrium and can be demonstrated simply, as shown in the diagram below.
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Figure 3a shows a simple inverted pendulum under a time-varying force, F (t). It is basically a
cantilever. Since this is a dynamic situation, inertia forces are generated that act on the mass.

Figure 3b shows a model or idealization of the distribution of the mass — it is idealized as
concentrated or “lumped” in the ball. That is, the mass of the stick portion of the pendulum is
included in the lumped mass, and the model consists of just this mass. Figure 3c shows all the forces
in the model. Clearly, at any time t,

Fi(t) +Fp (t) + Fs (t) = F (1) (1.1)

F, (t) is the inertia force. Fp (t) is the damping force. This represents the effect of internal friction,
or the surrounding air mass, that causes the vibration to die away with time if the vibration is
stopped. Fs(t) is the spring force. It represents the “springyness” of the system since the system is
essentially a cantilever. The time-varying force F (t), is called the forcing function, or the excitation.

Equation 1.1 expresses the dynamic equilibrium of the system and is called the equation of motion,
or the governing equation. By choosing a coordinate system, each of the forces can be expressed in
terms of the displacement of the system and so equation 1.1 can be solved for this displacement,
knowing which, all the forces on the left-hand-side (LHS) can be determined.

Modeling and Analysis Fundamentals

The previous section describes in a nutshell, what is involved in solving dynamics problems.
However, in this example only one set of possible approaches was used to setup the model and its
equations for solution, a process called formulation.

In general, the engineer has a specific set of decisions to be made that can affect both the accuracy
and economy (i.e. time and resources required) of the entire solution process. These are briefly
described in the following sections, as well as the emphasis that will be highlighted in this text. It
should be understood however, that in many instances, especially with the ready availability of
powerful computers and software, the final approach used may be just a matter of personal
preference.

1.4.1 Lumped mass vs Distributed Mass

In the simple inverted pendulum example discussed previously, the mass of the system was
idealized as a single lumped mass. This is because, since the inertia force is a central characteristic
of dynamic analysis, and inertia is a property of mass, it is important to represent the mass and mass
properties with sufficient accuracy. In contrast to a lumped mass idealization, the engineer can use
a distributed mass idealization. This is closer to the physical reality of the system. However, the
resulting mathematical model is considerably more complex compared to if a lumped mass
approach is used. The accuracy relative to complexity is sufficiently high if a lumped mass
idealization is used, that for many problems of practical interest to the civil engineer, this approach
is sufficient. It is the principal approach utilized in this text, though a distributed mass approach is
used for analyzing a beam in Chapter 4.

Another important idealization should be mentioned here, which is also made when the mass
idealization is made. This is called the kinematic idealization. Recall the inverted pendulum example
once more. It was mentioned that a coordinate system must be employed so that we can define the
displacement of the mass. The displacement is called a degree-of-freedom of the mass, so our
model is called a single degree-of-freedom (i.e. SDOF) model. It is possible for a mass to have more
than one DOF. For example, the floor of a building can be idealized as a single mass, with 3-DOF: a
displacement in the x-direction, a displacement in the y-direction, and the rotation of the floor in



plan. Such a model is called an MDOF or multiple degree-of-freedom model. Another type of MDOF
model is for example, a 2-dimensional building frame where each floor is idealized as a lumped
mass, with its own single displacement. The bulk of this text is about SDOF models and is presented
in Chapter 2. MDOF models are discussed in Chapter 3. It is interesting to note that for many
problems of practical interest, an MDOF problem can be solved by using SDOF solutions.

1.4.2 Force vs Energy

For our inverted pendulum example, the governing equation is given by equation 1.1. This equation
is in terms of force and, as will be shown in subsequent chapters, is a differential equation. This
equation is to be solved for the dependant variable, the displacement. For relatively simple models,
the solution of the differential equation is quite straightforward, but for more complicated models,
it becomes much more difficult. In engineering analysis in general, it is usually much easier to solve
governing equations if they are expressed using integrals rather than derivatives. The integral
equations are said to be “weaker”. The force equations can be converted to energy equations (using
for example the Principle of Virtual Work) in which case the differential equations now become
integral equations. It is more common however, for force, and hence differential, equations to be
used for the types of dynamics problems of typical interest to civil engineers, so this form of the
governing equations is used throughout this text.

1.4.3  Time vs Frequency

For our inverted pendulum example, the governing equation and its solution are functions of time
and are said to be in the “time domain”. However, for more complicated dynamic loading such as
shown in Figures 2b and 2c, there is important information or patterns that are not obvious when
expressed in the time domain. Rather than in the time domain, alternatively, the loading and
response (i.e. the solution of the differential equation), can be expressed as functions of frequency.
In this case, it is said that “frequency domain” analysis is being performed. This is made possible
due to the branch of mathematics called Fourier Analysis. Solution in the frequency domain
enables the engineer to determine the dominant frequencies in the loading and response and this
has important application in the design of the system, the understanding of the behavior, or the
classification of loading. Furthermore, it becomes relatively easy to readily determine the DAF of
the response for a range of problems of practical interest.

With the exception of finding underlying patterns however, modern computer technology (via
numerical analysis which is discussed in the next section) enables time domain analysis to provide all
the information as a frequency domain analysis but in a single formulation. Frequency domain
analysis also cannot be readily used for nonlinear problems. In this text, the emphasis is on time
domain analysis though frequency domain analysis is presented for several types of dynamic
loading, in Chapter 2.

1.4.4  Analytical vs Numerical Analysis

The governing equations of a dynamics problem can be solved analytically (i.e. as equations), also
known as “in closed-form”, but this is only possible for relatively simple dynamic loadings. For more
complicated loading, numerical analysis must be used and the ready availability of powerful modern
computers and software makes this quite straightforward. Numerical analysis algorithms are based
on replacing a continuous variable by a series of small discrete steps and in this manner differential
or integral equations are converted to algebraic equations, hence the necessity of computer
technology. These procedures are based on series expansions (i.e. Maclaurin or Taylor series) and
several have been developed for the direct or step-by-step integration of the governing differential
equations of structural dynamics. Some of these are discussed in Chapter 2.
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For MDOF analysis by one of the most popular approaches called mode superposition, it is first
necessary to determine the vibration mode shapes of the structure and in engineering mathematics
this is recognized as an eigenvalue problem. Numerical analysis algorithms have been developed for
this as well, and is discussed in Chapter 3.

1.4.5 Linear vs Nonlinear

In structural dynamics the issue of linearity or nonlinearity is with respect to the third term in the
LHS of equation 1.1 —the Fs (t) term. Recall that this is the spring force term. For many practical
ranges of the performance of a structure, the stress can be considered directly proportional to the
strain at any point in the structure. Hence for an SDOF system, Fs (t) = K x(t), where K, the
proportionality constant, is the spring constant or stiffness of the structure; x(t) is the time-varying
displacement of the structure. However, there are important problems for which this assumption
cannot be made. An example is the earthquake resistant design of buildings in which case, the
engineer deliberately allows the structure to yield at a number of points within the structure. At
those points the stress-strain relationship is nonlinear hence for the whole structure as well.
Therefore in such a case, K is no longer a constant and depends on x(t). Hence Fs (t) = K(x(t)) x(t)
which is clearly a nonlinear term.

The effect of nonlinearity is that another equation or procedure is required to evaluate K(x(t))
simultaneously with the other terms in the equation of motion and this makes the solution
impossible by analytical procedures, hence frequency domain methods cannot be applied. When
the problem is nonlinear, the typical approach is to use time domain modeling along with numerical
analysis, and this is examined in Chapter 3.

It should be mentioned that because of the difficulties associated with a nonlinear dynamics
problem, ingenious methods have been devised to convert the problem to an equivalent linear
problem. One approach is to replace the Fs (t) term by changing the damping term F; (t) in linear
problem but in such a manner that the overall effect is the same as for the nonlinear problem.

1.4.6 Deterministic vs Random

In section 1.2 the specification of dynamic loading as a spectrum was discussed. Recall that this
approach is required when the dynamics phenomenon is inherently random. In such a case, and
only for linear problems, the governing equations have as the dependant variable, the moments of
the response (e.g. the mean and standard variation).

From a civil engineering design perspective, this information can be used to determine a design load
or response but the number used will be associated with a selected confidence level. For example,
the load with a 2% probability of being exceeded. This is discussed further in Chapter 2.

Frequency domain solutions are extensively used for random dynamics problems, primarily because
the governing equations are integral equations. This field is particularly interesting for researchers
and is called Spectral Analysis.

Vibration Terminology
Certain terms are used in structural dynamics, in addition to those already presented, that are part

of describing the various aspects of the topic. Some of the more fundamental terms are described
as follows.



Period

Consider the vertical cantilever shown below in Figure 4a, and which is vibrating in a simple to-and-
fro motion. The displacement at the tip, x(t), is horizontal and has a maximum value of A when it
bends to the far right, but —A to the far left. The horizontal displacement at any time t, is the
projection onto a horizontal axis of a radius A of a circle, as shown in Figure 4b, as the radius rotates.
If at time t=0, the radius is in the horizontal position, but thereafter, the radius rotates, say, anti-
clockwise, then the time taken for the radius to make one complete revolution is the period. The
typical symbol for the period is T and the unit is seconds (sec).

N "\Fg
Figure 4a Vibrating cantilever Figure 4b Vibration in terms of a

rotating radius

Frequency

Referring to Figure 4b, the circular frequency is the angle from the horizontal that the radius rotates
per second. The typical symbol for circular frequency is w (or Q) and its unit is radians per second or
rps.

The rectilinear frequency is the number of complete revolutions made per second and is sometimes
preferred, rather than the circular frequency, for describing the vibration. When the radius makes a
complete circle it is said to have completed a cycle. The symbol for rectilinear frequency is f, and its
unit is cycles per second or cps or Hertz (Hz). fis simply the inverse of T, so f = 1/T.

Since the radius rotates 0 radians in time t, w = 8/t, hence 8 = wt. The radius makes one complete
circle in T seconds, therefore 2m = wT. So,

w=2m/T (1.2)
This is a fundamental equation of dynamics.

One must be conscious about which frequency is being referred to in dynamics equations since
many texts simple use the word “frequency” for either the circular or rectilinear frequency.

Harmonic

The simple to-and-fro motion of the cantilever in Figure 4a is called harmonic motion. In terms of
the rotating radius, as described previously, the displacement of the cantilever is the horizontal
projection of the radius so is given by,

X(t) = A cos 6 = A cos wt (1.3)

The vibration of simple continua such as strings can be shown to be composed of the summation of
equations such as 1.3 but each with a different “A” value and “w” value. When these components
are arranged in increasing order of frequency, they are called the first harmonic, the second
harmonic, etc.



Phase

The cosine and sine functions have exactly the same shape, but they have different values for the
same angle, wt. Therefore, the cosine and sine functions will be identical if one is shifted on the
angle-axis relative to the other. This shift or difference in angle is called the “phase difference”, or
just the “phase” for short. Hence the observation from trigonometry that cos 6 = sin (8 + 1t/2),
where 1t/2 is the phase difference between the cosine and sine functions.

The phase angle is very useful in dynamics for representing loading or response equations in the
most compact form.

Time Series
The shown in Figure 2, loading is frequently expressed as a function of time. This is also the case for
system responses. The entire set of data is sometimes referred to as a time series or a record.

Magnitude

For the case of harmonic motion shown in Figure 4, the magnitude of the displacement is tA. The
magnitude of a time series is its peak or maximum value and is particularly important to civil design
engineers since a structural system must be designed for the peak load or displacement that the
system will experience during its service life.

For systems under the types of loading shown in Figures b, c, and d, both the loading and responses
are typically mathematically represented in the frequency domain using summations of harmonics
expressed in terms of a complex number for each frequency. In this case, the magnitude is the
absolute value or modulus of the complex number.

Average

In several cases, the average or mean value of a time series, or the average of a set of values
recorded at different points on a system, but at the same time t, is useful. For example, in the study
of random vibrations, the “mean plus x-sigma” represents a certain probability of being exceeded,
where x is typically between 1 and 3. Also, when representing a time series as summations of
harmonics, the average value must also be added to complete the representation.

Root Mean Square

The root mean square or rms value of the displacement associated with a vibration is a measure of
the energy of the vibration. The mean square displacement is the average of the squared values of
the time series, or over a time interval. The rms is the square root of this value, and is measured in
rms meters.

Bandwidth

A bandwidth is a range of frequencies that may be of particular significance in the dynamic loading
or response of a system. For example, a particular bandwidth may be responsible for causing the
highest DAF. For dynamic loading, its spectral representation is called “wide-band” if the ordinate
(e.g. rms value) is the highest and fairly constant over a wide range of the frequencies relevant to
describing the loading, as shown in Figure 2e. Earthquake loading is wide-band, whereas loading
from a vibrating machine is typically narrow-band.

Octave
An octave is a frequency band in which the upper limit is twice the lower limit. So if frequencies are
divided into bands of 10-20 Hz, 20-40 Hz, 40-80 Hz, then each of these bands is an octave.
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Filter

This term is from the field of Signal Processing which shares many of the governing equations of
linear structural dynamics. In Figure 1, the middle box is a filter — it converts the input vibration to
another type of vibration as output. A high-pass filter reduces the values in the lower bands to very

small values, and a low-pass filter does the opposite.

Practical work in structural dynamics involves taking measurements as time series from different
points on a structure. However, because of computer technology the equipment uses digital
electronics and the time series is the results of sampling at a certain time interval. Therefore, the
terminology of Digital Signal Processing (DSP) is widely used in this aspect of structural dynamics and
because of the sampling, certain phenomena may arise that the civil engineer must be aware of for
proper use of the equipment, and interpretation of the resulting data.

The Basic Toolbox

The basic toolbox is comprised of the most fundamental methods or functions the engineer applying
structural dynamics is likely to use. These are presented in the following table.

METHOD/
FUNCTION

FUNCTION NAME

NOTES

Fourier Series (M)

Not Applicable (NA)

Used to represent a periodic load, and the
response due to a periodic load, as the sum
of a series at discrete frequencies.
Characterized by A, B coefficients, which are
the basic structure of the Fourier Series.

Fourier Integral (M)

NA

Used to obtain frequency domain response
due to a non-periodic load. The forcing
function is part of the integral and the
forcing function can be expressed as a time
series of numerical values, or in closed-form.
Represents the amplitudes of the
exponential form of the Fourier Series.

Symbolic Integration (F,
M)

Int

Can be used to get functions for A, B of the
Fourier Series for closed-form solutions. The
input is a symbolic expression and it returns
the integral as a symbolic expression.

Absolute value (F)

Abs

Gives the absolute value of a complex
number: a + ib, which can be used for a
compact form of the Fourier Series. The
input is the pair of numerical a, b numerical
values and it returns a numerical value.

Phase (F)

Angle

Gives the phase (lag) angle between a, b.
Returns a numerical value. The input is the
pair of numerical a, b values of a complex
number and it returns a numerical value.

Transfer function or
Force Response Function
(FRF) (F)

The DAF = |H| = Abs(H). If the input time
series is expressed with t as a continuous
function, then H represents an analogue
filter. Butif tis a set of discrete time values,
then H represents a digital filter. In the
former case, the MATLAB function that
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returns H is freqs( ), and for the latter is
freqz (). In both cases, the inputto H is a
symbolic fraction, and they return numerical

values.
Direct Fourier Transform P (sometimes F) This is the closed-form frequency density of
(M) a time series and is used to calculate its

amplitude spectrum, especially for hand-
calculations, which is possible for simple
dynamic loading. Cannot be directly
calculated by a single MATLAB function, but
a script can be developed, based on the

Int () function, to get P (A, B also) in closed-

form.
Fast Fourier Transform FFT Gives the magnitude vs frequency of a given
(F) time series where the time is as a set of

discrete equally spaced values. This is the
numerical version of function P and is
necessary for more complicated loading.

The input is a set of time series numerical
values, and it returns the numerical values of
the amplitude spectrum.

Runge-Kutta 4™ Order Ode45 Implements the Runge-Kutta 4™ or 5™ Order
Numerical Integration procedures of numerical integration of a set
(M, F) of 1% order ODEs. The input is the symbolic

expression of the DEs, the interval, and the y
values at the left end of the interval. It
returns the numerical values for y over the
interval. Can be used to solve the ODEs
representing the equation of motion.

Eigenvalue/Eigenvector Eig For linear MDOF dynamics, the modal
Analysis (M, F) superposition method is widely used. An
eigenvalue/eigenvector analysis gives the
mode shape and its frequency. The input is
the mass and stiffness values associated with

each DOF.
Graphical Plotting (M, F) Subplot and Though not a dynamics method, computer
Plot graphics is indispensible for displaying the
input loads and response of dynamic
analysis.

» u

Students sometimes confuse the terms “closed-form”, “numerical”, “discrete”, and “continuous”. A
closed-form solution means that the values can be calculated using a symbolic expression. A
numerical solution means that the solution can only be obtained as a set of number values.
“Discrete” means that the y-axis values only exist at specific x-axis values. An example is the
spectrum of a Fourier Series, which only has values at specific frequencies but is zero in-between.
“Continuous” means that any value on the x-axis has a value on the y-axis, hence when plotted a
smooth curve is obtained. An example is the spectrum of a Fourier Integral which has values at all
frequencies. Note that it is possible to have a closed-form solution for discrete spectra. This means
that at the frequency in question, the value is given by a symbolic expression. Furthermore, even
though a symbolic expression may exist, it is implemented in a computer program by calculating the
value at discrete values, usually via a loop.
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Computer Software

MATLAB

The methods/functions presented above are usually implemented using computer software,
especially for practical problems. A popular software framework for math calculation is MATLAB by
The Mathworks Inc. The functions in bold type in the table above are MATLAB command names.
MATLAB is mainly a set of functions grouped into sets by topic and each set is called a “toolbox”.
MATLAB comes with a basic collection of toolboxes but many others are available as options.
MATLAB is a very hi-level language designed around the matrix as the fundamental data type so
input data should be vectorized. MATLAB is an interpreted language and the commands can be
collected together as a “script” file with extension .m which is in effect a computer program.
MATLARB is available at many universities but can be pricy, even for the student-edition.

GNU Octave

Octave is a MATLAB open-source (i.e. free) clone that has evolved to almost 100 % compatibility. It
uses the same commands as MATLAB. Octave for Windows is run from the command line. The
install files for the Octave exes (called binaries), can be downloaded from:

http://octave.sourceforge.net/

An online manual for Octave is available from:

http://www.gnu.org/software/octave/doc/interpreter/

MAXIMA
Octave’s compatibility with MATLAB is, however, only with respect to numerical computations.
MAXIMA is an open-source symbolic mathematics program that can be downloaded from:

http://sourceforge.net/projects/maxima/files/Maxima-Windows/5.22.1-Windows/maxima-
5.22.1.exe/download

ENGLTHA

ENGLHA (Earthquake Nonlinear and General Linear Time History Analysis) is a computer program
developed by the author for teaching structural dynamics. It gives the time domain solution for any
input loading for a SDOF system, and caters for nonlinearity due to inelasticity, and including
hysteretic degradation.

In this text, both MATLAB or Octave for numerical work, MAXIMA for symbolic work, and ENGLTHA
are used to illustrate problem solving and demonstrations.

Problem Solving Strategy

The characteristics of a given dynamics problem indicate which approaches are possible for solution.
The diagram on the following page is an overall summary of the main steps required for solving
SDOF linear dynamics problems. For the frequency domain, the approach gives peak values only.

Though covering only the SDOF case, as will be seen in subsequent chapters, the most widely used
method of MDOF dynamic analysis superimposes the results of SDOF analysis, making the SDOF
analysis methods critical for the solutions of many types of problems, even for continuum
structures.
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PROBLEM SOLVING STRATEGY MAP FOR LINEAR SDOF STRUCTURAL DYNAMICS

PROBLEM

Closed-Form

Numerical

Periodic Load

Non-Periodic Load

Time Domain

Frequency Domain

Time Domain

Frequency Domain

A 4

A 4

y

Integrate to get
expression for A, B or P
for given loading

Integrate to get expressions

for spectra for load

Get a function for the
load

)

Integrate to get expressions
for spectra for load

y A\ 4 \ 4
Recall solution for load GetH Recall solution for unit GetH
as Acos + Bsin impulse
\4 \4 \4 \4
Sub. A, B in solution Multiply load spectra by Sub. In convolution Multiply load spectra by
H integral and integrate H

d

h

Periodic or Non-Periodic Load

Time Domain

Frequency Domain

A 4

Prepare a file of load,

Perform FFT to get load

time data magnitude spectra
A 4 v
Numerically integrate Get H
the ODE (RK, etc)
v

Multiply load spectra by
H




