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2.0 SDOF Lumped Parameter Dynamics 
 

2.1 The Fourier Series and Fourier Integral 
 

2.1.1 Forms of the Fourier Series 
 
Use of the Fourier Series (FS) is a type of curve-fitting exercise in which a function is represented by 
the sum of a cosine plus sine term.  That is, p(t) = (a1 cos ωt + b1 sin ωt) + (a2 cos 2ωt + b2 sin 2ωt) + 
…….  Given p(t), the aim is to determine the constants a1, b1, a2, b2, …..  The FS can be expressed in 
various forms that can simplify subsequent calculations.  In structural dynamics p(t) is the dynamic 
loading, also called the forcing function, on a structure.  The FS is particularly useful for representing 
periodic loading. 
 

2.1.1.1 Trigonometric Form  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider any periodic function of time such as that shown in Figure 5, where T is the period. 
p(t) expressed as a Fourier Series (FS) is given by, 
 

t)n sin nbtnω cos
1n

n(a
2

0a
p(t) 




        (2.1) 

 
a0, an, and bn are real constants, t is time, and ω = 2π/T, is the frequency.  a0, an, and bn are called the 
real Fourier coefficients. 
 
an and bn are respectively equivalent to the horizontal and vertical projections of the radius of a circle 
in which the length or magnitude of the radius is An.  Therefore, if φn is the angle between An and an, 
then, 
 
tan φn = bn/an          (2.2) 
 
φn is therefore the phase difference, lag, or angle between an and bn. 
 
Also, 
 

22
nbnanA           (2.3) 

 
Eqn (2.1) is rewritten as, 
 

Figure 5 

T 

Time 

p(t) 
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Hence, if A0 = a0/2, and φ0 = 0, 
 

)n - t(nω  cos
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  nAp(t) 





0
        (2.5) 

 
 
Plots of An vs frequency, and φn vs frequency, are called the amplitude or magnitude spectrum, and 
the phase spectrum, respectively.  They are discrete and occur at the Fourier frequencies nω = 2nπ/T. 
 
Note that A0 is called the “DC” (i.e. direct current) term, and is the average value of p(t).  This enables 
its value to be determined by visual inspection in many cases.  Eqn (2.5) is called the real sinusoid form 
of the FS. 
 
The Fourier Coefficients are determined from, 
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Hence knowing p(t) in closed-form, a0, an, and bn can be determined as formulae, and back-substituted 
in eqn (2.1) or (2.5). 
 
If p(t) is an odd function, then an = 0, and if it is an even function, then bn = 0.  A function is odd if f(-x) 
= -f(x).  A function is even if f(-x) = f(x).  Graphically, for an even function the y-values for the -x values 
are a mirror image of the y-values for the +x values.  For an odd function the y-values for the -x values 
are a mirror image of the y-values for the –x values, but flipped about the x-axis. 
 

2.1.1.2 Exponential Form  
 

The exponential form of the FS is due to the Euler’s formula for a complex number which leads to, 
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Substituting in eqn (2.1) and simplifying, 
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where   P0 = a0/2         (2.10) 
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Eqn (2.9) is the exponential form of the FS; i = √(-1) .  Note that in eqn (2.9) the limits are from -∞ and 
not 1 as in eqn (2.1). 
 
Pn and P-n are complex numbers and P-n is the complex conjugate of Pn.  Eqn (2.10) applies when n = 0.  
Eqn (2.11) applies when n > 0, and eqn (2.12) applied when n < 0, in which case the Fourier 
frequencies are negative.  Pn is calculated from, 
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|Pn| is the amplitude, magnitude, or modulus of Pn.  The amplitude spectrum of the exponential form 
of the FS is the graph of |Pn| vs frequency, and the frequencies have a negative range.  This is called a 
two-sided spectrum.  Like the amplitude spectrum of the trigonometric FS, the spectrum is a set of 
discrete values.   The concept of negative frequencies is counter-intuitive so a one-sided spectrum is 
frequently used.  For a one-sided spectrum the values are twice those of a two-sided spectrum. 
 
The spectral values of the trigonometric form of the FS are related to those of the exponential form of 
the FS by the following, assuming one-sided spectra (i.e. positive frequencies only).  This is indicated 
by eqn (2.3). 
 

|2Pn| = 22
nn ba           (2.14) 

 
tan φn = Im(Pn)/Re(Pn)         (2.15) 
 
where Im is the imaginary part, and Re is the real part.   
 
Other useful relationships, which hold for any complex number, are, 
 

Re (Pn e
inωt 

) = ½ (Pn e
inωt

 + Pn
*
 e

-inωt
)       (2.16) 

 

Pn Pn
*
 = | Pn|

2
          (2.17) 

 
From the above, it is therefore important to be mindful of which type of FS is required, or is referred 
to. 
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2.1.2 The Fourier Integral 

 
The Fourier Integral (FI) is particularly useful for representing non-periodic dynamic loading, also called 
arbitrary loading.  Arbitrary loading includes the cases of short-term loading (also called transient 
loading e.g. blast loading), and random loading.  Therefore the FI is of wide application in structural 
dynamics particularly for solution in the frequency domain. 
 
Recall Figure 5.  This suggests that it may be possible to use the FS for non-periodic loading as the 
loading can be non-periodic in T.  However, the FS is periodic within any range of t and therefore 
repeats when t > T.  For non-periodic loading the structural response after the loading has stopped is 
typically of interest therefore response calculations for t > T will be inaccurate.  Hence the FS cannot 
be used to represent non-periodic loading. 
 
Recall eqn (2.9).  The frequency corresponding to each term is nω = 2nπ/T and in the spectral 
representation, the discrete lines are separated by a finite frequency interval.  Hence as the frequency 
interval tends to zero, in the limit the summation becomes an integral and eqn (2.9) becomes, 
 

dfftie)f(Pp(t) 




 2  
        (2.18) 

 where,
 

dtftie)t(pP(f) 




 2          (2.19) 

Note that in these equations the measure of frequency is f, the rectilinear frequency (Hz or cps), and 
not ω, the circular frequency (rps).  Note also that P(f) and p(t) are continuous functions. 
 
P(f) is called the Fourier Transform (FT) of p(t), and p(t) is called the Inverse Fourier Transform (IFT) of 
P(f).  They are referred to as a transform pair. 
 
In this text P(f) is called the direct Fourier Transform since it can be obtained in closed-form if p(t) is 
expressed as a function.   Similarly, the Fourier coefficients of the FS can also be obtained in closed-
form.  However, in many cases (e.g. data available as load, time points), the Fourier Transform cannot 
be obtained in closed-form, and a numerical approach is required.  This is called a Discrete Fourier 
Transform (DFT) which under certain conditions can be optimized in which case it is called the Fast 
Fourier Transform (FFT).   The FT is a powerful mathematical operator in general and readily provides 
the response output for a given input, for linear problems.   
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2.2 Solutions 

 
2.2.1 Introduction – The Atomic Solutions 

 
Atoms are the building blocks of elements, molecules, compounds, etc, hence of all matter.  In the 
same way, for linear problems, the solutions for the case of General Harmonic loading, and Impulse 
loading, are the building blocks for determining the solutions for all other types of loading. 
 
This is because of the Principle of Superposition which simply means, for example, that if you know the 
solution for “x”, then to get the solution for “2x”, just multiply the solution for “x”, by 2. 
 
General Harmonic loading is given by A cos ωt + B sin ωt and its solution is as presented below in 
section 2.2.2.1.1.  However, as shown above in section 2.1.1, any load represented as a Fourier Series 
(i.e. any type of periodic loading) is a sum of terms of the form A cos ωt + B sin ωt, so knowing the 
solution for General Harmonic loading, the solution for any periodic loading is obtained merely by 
suitably multiplying or superimposing, the solution for the General Harmonic loading. 
 
Likewise, for any non-periodic or arbitrary loading, at any point in time, t, that load can be considered 
an impulse load.  Therefore any loading can be considered as a set of impulses.  Hence by knowing the 
solution for an impulse load, as presented in section 2.2.2.1.2 below, to get the solution for an arbitrary 
load, the result for the impulse load is multiplied or superimposed, for each load value at time, t.   
 
In the following sections, solutions are presented in both the time and the frequency domains.  This 
means as functions of time, and as functions of frequency, respectively.  Solutions in the time domain 
describe when any item of interest occurs, such as a peak response, but it does not easily describe what 
aspects of the loading are most influential.  A frequency domain solution however, gives only peak 
responses but not when they occur.  It however does indicate which aspects of the loading are most 
influential by revealing their frequency content.  For problems that are sufficiently simple that closed-
form solutions are readily available, the frequency domain approach gives rapid results and since civil 
engineers are very concerned about peak values, the frequency domain approach may be preferred.   
 
Practical problems are typically sufficiently complicated that closed-form solutions are not available, 
and since numerical methods must then be used, the two approaches tend to have approximately equal 
advantages as disadvantages.  The frequency domain approach is generally preferred for random 
loading, due to the possibility of linearization. 
 
Note that since these “atomic solutions” are used with the Principle of Superposition, this “atomic 
solutions” approach is only valid for linear systems.  However, for very many problems of interest in civil 
engineering, a non-linear problem can be converted to an equivalent linear one, thus making the linear 
solutions applicable.  The non-linear case is presented below in section 2.2.3. 
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2.2.2 Linear  
2.2.2.1 Time Domain 

2.2.2.1.1    General Harmonic 
 

A SDOF system is simply a representation of the structure as a single lumped-mass that can only move along one 
line, but possibly forward or backward.  This single way the structure can move is hence called a single degree of 
freedom (SDOF).   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Typical structural models for SDOF systems are as shown in Figures 6 and 7(a) above.  In each case only the lumped 
mass is considered to have mass.  Also, the essential elements of the model are: the lumped mass, the spring and 
the dashpot.  The spring element represents the “springyness” of the structure, and the dashpot element 
represents anything that may oppose the motion of the structure such as internal friction.  Both Figure 6 and 7(a) 
are the initial idealizations of the structure.  Civil engineers can usually identify more easily with the structural 
model as Figure 7(a) which is a simple portal frame with the mass at the beam level.  Therefore this model will be 
used throughout this text. 
 
Figure 7(b) shows the free body diagram (FBD) associated with the structural model and makes it easier to identify 
the relevant forces on the system and hence formulate the equation of motion.  
 
With the applied dynamic force, also called the forcing function or excitation, as F(t), the inertia force is F i(t), the 
spring force is Fs(t), and the damping force is FD(t).  Note that the dynamic force F(t) is directly applied to the mass. 
 
According to d'Alembert's principle of dynamic equilibrium, but examining the forces directly acting on the mass,  
 
FI + FD + FS = F(t)           (2.20) 
 
 
 
 
 
 
 
 

Figure 6 

Figure 7(a) Figure 7(b) 

F(t) 

C 

M 

K 

F(t) FI = M(d2v/dt2) 

FS = Kv 
FD = C (dv/dt) 

Lumped mass 
Spring 

Dashpot 
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The displacement of the structure relative to its base is defined as v, as shown in Figure 8. 
 
Hence, from Newton’s Second Law, 
 
FI(t) = M(d

2
v/dt

2
) 

 
In classical damping, also called viscous damping, it is assumed that the damping force is proportional to the 
velocity of the mass.  This is the typical type of damping considered in structural dynamics and other types can 
frequently be converted to equivalent viscous damping.  Hence, considering the viscous damping constant as C, 
 
FD(t) = C (dv/dt) 
 
From elementary structural mechanics the spring force is, 
 
FS(t) = Kv(t) 
 
K is a constant in the above eqn hence the term is linear with respect to v.  K is the lateral stiffness of the structure.  
For a nonlinear system K is not a constant but is a function of v (i.e. K(v)). 
 
Substituting in eqn (2.20) and dropping the (t) from v for simplification, 
 
M(d

2
v/dt

2
) + C(dv/dt) + Kv = F(t)         (2.21) 

 
From the theory of ordinary differential equations (ODEs), eqn (2.21) is a linear second-order non-homogenous 
ODE with constant coefficients.  Hence its solution is given by, 
 
v = vc + vp           (2.22) 
 
where vc is the complementary function and vp is the particular solution.   The complementary function is the 
solution of the homogeneous from of eqn (2.21) in which case the RHS is zero.  When the RHS is zero there is no 
forcing function so this is called free vibration.  Therefore, the solution of the free vibration problem is part of the 
solution of the total response given by eqn (2.22).  The cases of undamped and damped free vibration are 
therefore presented next. 
 
 
 
 
 

v = relative displacement 

Figure 8 
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Undamped Free Vibration 
 
For the case of free vibration there is no applied load so the RHS of (2.21) is zero.  In the most general case, the 
mass can have a displacement value at time t = 0 hence v(0) ≠ 0.  If the system has no damping then the second 
term on the LHS of eqn (2.21) is zero.  This case is called undamped free vibration and is both instructive and 
useful.  The presence of damping has important consequences depending on the amount of damping present and 
this is best seen by comparison with the undamped case.  More significantly, the solution to the undamped free 
vibration problem is essential in the study of the multiple-degree-of-freedom case (MDOF), presented in section 3. 
In that case it is required for calculating the mode shapes of the structure. 
 
Therefore for undamped free vibration eqn (2.21) becomes, 
 
M(d

2
v/dt

2
) + Kv = 0          (2.23) 

 
As eqn (2.23) is second-order, its general solution has two constants.  The general harmonic relation satisfies eqn 
(2.23).  Therefore, 
 
v(t) = A cos ωnt + B sin ωnt          (2.24) 
 
ωn is called the natural frequency of the system.   By substitution into eqn (2.23) it can be shown that ωn = √(K/M), 
hence T = 2π√(M/K).  Also, consideration of the initial conditions gives the constants A and B as, 
A = v(0) 
B = (dv/dt)t=0/ωn 
 
From the trig identity Acos θ + Bsin θ = X cos(θ - α), X = (A

2
 + B

2
)

12
  , and tan α = (B/A).  Graphically, eqn (2.24), the 

displacement response for undamped free vibration, is as shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Damped Free Vibration 
 
If viscous damping is present in the system, (2.23) becomes, 
 
M(d

2
v/dt

2
) + C (dv/dt) + Kv = 0         (2.25) 

 
Dividing by M, we get, 
 

d
2
v/dt

2
 + 2n(dv/dt) + 

2
v = 0          

 

where 2n = C/M           ( is pronounced “zeta”) 

Figure 9 
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The solution of is, 
 

v = A exp (1t) + B exp (2t)         (2.26) 
 

where 1, 2 = n[ -   (
2
 - 1)

1/2
 ]         (2.27) 

 

(2.27) indicates that the solution changes form according to the value of 
2
. 

 

If 
2
 < 1, 

 

v = X exp (-nt) sin (Dt + )         (2.28) 
 

where X = (A
2
 + B

2
)

1/2
  = tan

-1
 B/A 

 

D = (1 - 
2
 )

1/2
 n           (2.29) 

 
For initial conditions of v = 0 and (dv/dt)t=0 , A and B can be shown to be, 
 
A = v(0) 

B = [(dv/dt)t=0 + nv(0)]/ D 
 
D is called that the damped vibration circular frequency.  The portion of the equation before the sine of (2.28) and 
(2.30), indicates that the system experiences a decaying oscillation with t, and is an envelope of the response. 
 

If 
2
 > 1, the system does not oscillate since the effect of the damping overshadows the oscillation.  This is called 

overdamped system.  If 
2
 < 1, this is called an underdamped system.  Vibration can only occur if the system is 

underdamped. 
 

The condition 
2
 = 1 indicates a limiting value of damping at which the system loses its vibratory characteristics; 

this is called critical damping.  From (2.25), the critical damping constant,  
 
Ccr = 2nM = 2(MK)

1/2
          (2.30) 

 

 is defined in terms of Ccr as,   = C/Ccr.  Hence  is called the fraction of critical damping, or the damping ratio.  

Typical values of  are 5% for reinforced concrete, and 2% for steel. 
 

From (2.28) we get a means for experimentally determining .  It can be shown that for successive vibration 
amplitudes of a damped system, 
 

ln (vn/vn+1)  2.  This is called the logarithmic decrement. 
 
Graphically, eqn (2.28), the displacement response for damped free vibration, is as shown below. 
 
 
 
 
 
 
 
 
 



22 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Note that eqn (2.28) can also be written as, 
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General Harmonic Loading 
 
Returning to equations (2.21) and (2.22), general harmonic loading is when the forcing function or dynamic loading 
F(t) = po sin ’t , or po cos ’t.  Consider, 
 
M(d

2
v/dt

2
) + C(dv/dt) + Kv = F(t) = po sin ’t        (2.32) 

 
In eqn (2.22) the complementary function is the solution of the homogeneous equation which is the solution of the 
free vibration problem given by (2.28) or (2.31).  Because of damping vc dies off quickly so is called the transient 
response.  The particular solution is called the steady-state solution because after vc dies off, the vibration of the 
system continues under the action of the forcing function.  It also has the same frequency as the forcing function 
but lags behind it.  This means that the peak response of the system occurs some time after the peak force of the 
forcing function.  Therefore, due to the trigonometric identities, the steady-state response is of the form A cos 

’
t 

+ B sin 
’
t. 

 

tsinBtcosAvv p           (2.33) 

 
Dividing (2.32) by M, then substituting (2.33), 
 

tsin
M

p
tcosA

M

K
tsinB

M

K
tsinA

M

C
tcosB

M

C
tcosAtsinB  022

  (2.34) 

 
Simplifying, 
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and, 

X 

TD = 2/D 

t 

v(t) X e 
-

n
 t

 X sin φ 

Figure 10 
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Solving (2.35) and (2.36) for A and B, 
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Let r = ω

’
/ ωn .  This is called the frequency ratio. 

 
Also, let X0 = equivalent static deflection = p0/K.  Hence, 
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Therefore, (2.37) and (2.38) become, 
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Amplitude and Phase Angle Form:- 
 
Alternatively, eqn (2.33) can be written as, 
 

)tsin(Xv fp            (2.41) 

 
The subscript “f” refers to “forcing”, as opposed to the “o” referring to the static condition. 
 
Hence, 
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Since the forcing function is p0sin ’t, (2.42) indicates that the effect of the forcing function is to magnify the peak 
deflection by a factor.  This factor is the dynamic amplification factor, DAF, and is given by, 
 

222 21

1

)r()r(
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           (2.43) 

 
The comparison also shows that the response lags the forcing. 
 
Eqn (2.43) indicates that the amplification depends solely on the dynamic properties of the SDOF oscillator – the 
damping ratio, and the frequency ratio.  Eqn (2.42) is an atomic solution since it can be used as the basis for the 
solution of any periodic (though non-harmonic) forcing function, as presented in subsequent sections. 
 
Recall that (2.32) and (2.42) are with respect to the steady-state or particular solution.  When the complementary 
function or transient response is included, the total response (for the underdamped case) is given by, 
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2.2.2.1.2    Impulse 
 
An impulse load is one that is suddenly applied, but impulse is the product of force and time, or the area under a 
force-time curve.  Hence if the load is to be considered at a point in time, t, we must consider the limiting case 
when an infinitesimal time interval around the impulse load, tends to zero. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Clearly, as ε tends to zero, the impulse load, given by Area/ ε, tends to infinity.  It cannot quite become infinity 
since the impulse load is finite.  If the area is unity, this is termed as the unit impulse and as ε tends to zero, the 
corresponding force meets the definition of the Dirac Delta Function or Delta Function.  The delta function has the 
conventional notation of δ(t - ξ ) and has the properties of, 
 
For all t ≠ ξ,    δ(t - ξ ) = 0 

For t = ξ,    δ(t - ξ ) = a large finite number     (2.45) 

Also, for 0 < ξ < ∞  




0

01.dt)t(        (2.46) 
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Because of eqn (2.45), the impulse load, represented by the delta function, is graphically depicted as an arrow at 
the location where it has a value (i.e. t = ξ).  Note also that the notation for the delta function involves (t - ξ).  This 
is meant to indicate that an impulse has an effect for values of t beyond t = ξ, as in a pond that continues to ripple 
long after a stone is thrown into it. 
 
An impulse Pt acing on a system will cause a sudden change in its velocity without a change in its displacement 
during the infinitesimal time during which it is applied.  From Newton’s Second Law, this change in velocity equals 
Pt/M.  As velocity is dv/dt and the impulse is applied at t = 0, 
 
(dv/dt)t = 0 = Pt/M           (2.48) 
 
Furthermore, at t=0 when the impulse is applied, v = 0, so v(0) = 0.  Together with (2.48), these are the initial 
conditions for the impulse vibration.  We may recognize that this is a special case of the initial conditions of free 
vibration hence we can utilize those solutions to determine the response of an SDOF system under impulse load.  
Hence, for undamped vibration, from (2.24) 
 

)t(hPtsin
M

P
v tn

n

t 


           (2.49) 

 
For the case of damped vibration, from (2.31) 
 

)t(hPtsin
M

Ptnev td
d

t 
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
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         (2.50) 

 
In both (2.49) and (2.50), h(t) is the response to a unit impulse. 
 
 
2.2.2.1.3  Periodic 
 
Figure 5 above shows an example of a periodic load.  In that section it was shown that such a load can be 
represented by the Fourier Series (FS).  Now that the solution for the response of a linear SDOF system under 
general harmonic loading is known, the Principle of Superposition allows determination of the solution for periodic 
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loading as the sum of the (steady-state) solutions for general harmonic loading.  This is because the FS 
representation of the periodic loading is expressed as a sum of general harmonics. 
 
Hence recalling eqn (2.21), 
 

 






1

0

2

2

2
n

nn tnsinbtncosa
a

)t(FKv
dt

dv
C

dt

vd
M       (2.51) 

 
Eqn (2.42) is the solution when the harmonic force is p0sinω

’
t and is of the same form.  Likewise, if the harmonic 

force is p0cosω
’
t the solution is also of the cosine form but lagging by the same phase angle as for the sine case.  

Therefore the steady-state solution of (2.51) is, 
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Note that K is required in the denominator to convert to displacement. 
 
Given a periodic load F(t), the solution is therefore obtained by first representing the load as a FS, and substituting 
the Fourier coefficients into (2.52). 
 
 
2.2.2.1.4 Non-Periodic 
 
Non-periodic dynamic loading, also known as arbitrary dynamic loading, is the most general type of loading.  
Examples are earthquake loading on a building, blast loading, or collision loading.  Solutions for this type of loading 
are based on the solution or response for a unit impulse, h(t), which is why the latter is considered an atomic 
solution. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

p(ξ)∆ξ h(t- ξ) 

p(ξ)∆ξ 

ξ= t 

ξ = t 

ξ 

ξ ξ 
∆ ξ 

p(ξ) 

ξ 

Figure 13(a) 

Figure 13(b) 

t - ξ 

v(ξ) 

 



27 
 

 
 
Figure 13(a) depicts the following situation – at a point in time ξ in an arbitrary loading function, the load can be 

considered an impulse load.  In Figure 13(b) - the curve is the response due to the impulse in (a) hence occurs after 

ξ has elapsed (i.e. t- ξ).  Since the impulse associated with p(ξ) is p(ξ)∆ξ, and the response due to a unit impulse is 

h(t- ξ), the response due to p(ξ)∆ξ must be p(ξ)∆ξ h(t- ξ). 

However, this response is due to the load at a single point.  If the entire arbitrary loading function is considered a 
set of impulses, the solution at time t for this set of impulses can be obtained by superimposing the responses for 
all the impulses.  Hence in the limit, this superimposition or summation, becomes an integral.  Therefore, 
 

  d)t(h)(p)t(v

t

0

          (2.53) 

Eqn (2.53) is the displacement response for arbitrary loading, where h(t- ξ) is given by (2.49) and (2.50) for the case 
of undamped and damped systems respectively.  Eqn (2.53) is called the convolution integral or the superposition 
integral. 
 
Hence for the damped case, the solution for arbitrary loading under zero initial conditions is given by, 
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For non-zero initial conditions, the complete solution is the superposition of the particular solution and 
complementary function.  Therefore including the damped free vibration solution of eqn (2.31), the complete 
solution is, 
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Response Spectrum 
A response spectrum is a plot of maximum or peak response versus frequency and is therefore of great interest to 
the engineer for design applications.  In the time domain, the convolution integral can be used to calculate 
response spectra.  This approach to determining response spectra is however quite tedious compared to 
alternative approaches, except for simple non-periodic dynamic loads such as shock loading. 
 

 


