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2.2.2 Non-Linear
Reproducing eqn (2.21),

d?v(t)
dt?

dv(t)

M +C +Kv(t) =F(t)
dt

In this equation, the C and K are constant but there are several cases when this is not so. For example, in the third
term on the LHS - the spring force term, the stiffness K is a constant because the load-deformation relationship for
the structure is linear. However, if K depends on the deformation of the structure v, the term Kv becomes K(v)v
which is clearly nonlinear, and this makes the entire equation nonlinear.

A common example of such nonlinearity is inelasticity in which case the load-deformation relationship does not
obey Hooke’s Law. For instance, if a structure is loaded such that yielding occurs within the structure, plastic
deformation takes place. One of the central concerns of engineers working in earthquake prone regions is the
dynamics of structures that have entered the plastic range since this is the main approach for the earthquake
resistant design of structures. Though there are other types of nonlinear equations of motion in structural
dynamics, the type due to the earthquake loading of structures in the plastic range of response is the type
considered in this text.

The solution of a nonlinear dynamics equation cannot be obtained in closed-form, such as for the several cases
considered earlier. Recall that for those cases, the solution method is the symbolic integration of the equation of
motion, which is a linear differential equation. As in many other areas of engineering mechanics, when a closed-
form approach cannot be used, a numerical method can provide a solution. Furthermore, even if the equation is
linear, solution in closed-form generally cannot be obtained if the dynamic loading is arbitrary. Therefore,
numerical integration is required for the two situations of: (1) linear structures under arbitrary loading, or (2)
plastic response. Under earthquake loading, both situations simultaneously occur for many structures of interest.

In this section the numerical solution of the equation of motion via a popular method is presented and is applied

to the case of arbitrary loading of a linear structure. The same method can be applied to the case of the nonlinear
equation.

2.2.2.1 Numerical Integration of the Equations of Motion

f(x) 4

/"\///\

v

X1 X2

Figure 19
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Figure 19 shows a portion of a general function v=f(x). We know a relationship comprised of derivatives of v but
desire to know v for all x. If we know the value of f(x;), and the slope of f(x) between x; and x,, we can
approximately calculate f(x) at x,. Note that the slope is the first derivative of f(x). A better approximation is
obtained if higher derivatives are used since in the most general case they may exist and if so, contribute to f(x).

The Taylor series gives the most general representation of f(x) in terms of its derivatives, but the series is infinite.
In numerical integration, higher derivatives beyond a certain selected term in the Taylor series are typically ignored
(truncated) and in many cases, the others are replaced by averaged first derivatives or slopes. Truncated series are
the basis of all numerical methods therefore all numerical methods give approximate results. However, the
methods typically give reasonably accurate results and most importantly, are readily applicable to simple
computation, especially via computers. In these methods the differential equation is effectively replaced by a set
of algebraic equations and the computation starts from x=0 and proceeds step-by-step to the next x at end of the
interval “h” (e.g. x, — Xy in Figure 19), but using the results of the previous step. The values at x = 0 must be
known. The calculation is therefore iterative in nature and called step-by-step direct integration.

There are several classes of numerical integration methods. These were developed so early compared to the
history of computers that a very important criterion in the selection of a method was the time required by the
individual or computer to run the solution. In the earlier days of the evolution of computers the final decision was
frequently based on this criterion only, since differences in expensive computing time was typically higher than
differences in accuracy. The high speed and relatively low cost of modern computers has changed this scenario so
in civil engineering relative accuracy is probably the main criterion with the result that the Runge-Kutta 4™ Order
method (RK4) is a popular choice, named after the German mathematicians who developed it.

The order of a method is a measure of its accuracy. The error associated with a method is proportional to its order
“m” which is the power to which the interval “h” is raised (i.e O(h™)). “h” is less than unity so the higher the order,
the smaller the error. The RK4 method is classified as a self-starting, unconditionally stable, single-step method.
There are 2™ and 3" order RK methods but the classical RK method is the 4™ order, due to its generally better
balance of computing time versus accuracy. There is also a 5™ order RK method that is more accurate but more
time consuming.

In the RK4 method, the higher derivatives of the Taylor series are replaced by weighted averages of the slope in
the interval. The RK methods integrate a first order differential equation. However one of its advantages is that by
suitable substitution, second and higher order differential equations, or sets of such equations can be replaced by
a set of simultaneous first order differential equations then the RK method applied.

Mathematics texts can be consulted for the derivation of the RK4 method but the concern of this text is its
algorithm which is based on the following fundamental equations.

2

. d%v . dv . . . .
Let v :d—2 and v :E. Note that in terms of notation, the independent variable “x” has been replaced by “t” for
t

application to dynamics.

v ="f(t,v,v)

let v=vy,

hence y=v

v(t, +h) = v(t,) +h[v(t,) +(k; +k, +k3) /6 | (2.79)

V(t; +h) = V(t;)+ (k, + 2Kk, + 2kg +k ) /6 (2.80)
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ky=h f(t;,v;,V; (2.81)
h h. h . k

k,=h f(t, Vit +§kl WV, +?1) (2.82)
h h. h . k

ks =h f(t; Vit +§k2,vi +72) (2.83)

k,=hf(t;+h,v;+hv, Jr%kg),\'/i +k3) (2.84)

It is quite simple to write a computer program for eqns (2.79) to (2.84) since they depend on evaluations of just
one function at different points in the interval. A function can be defined whose arguments enable evaluation at
any point and the main program will merely define those points and call the function as required.

The algorithm for the RK4 method can also be implemented in a form amenable to hand or spreadsheet
calculation. In the approach by Thomson, a 4x4 grid is used to implement the calculations given by (2.81) to (2.84)
for each time value. These intermediate values are then substituted in (2.79) and (2.80), and the equation for v,
to obtain the solution at t;. “t” is then incremented and the process repeated until the end. The 4x4 grid of
intermediate calculations is given by —

t Y y:\'/ f
Tl=t; X1=x Yl=y; F1 =f(Ty, X1, Y4)
T2=t+h/2 X2=x;+Y1xh/2 Y2 =vy;+F, h/2 F2 =1(T,, X,, Y2)
T3=t;+h/2 X3=x+Y2xh/2 Y3=y;+F, h/2 F3 =f(Ts, X3, Y3)
T4=t;+h X4=x;+Y3xh Y4=y;+F;h F4 = (T4, Xa, Ya)

Then given (2.79) and (2.80) and some modification,

Viep = Vi + h/6(Y1 + 2Y2 + 2Y3 + Y4) (2.85)
Viwr =V +h/6(FL+2F2 + 2F3 + F4) (2.86)

The following is a sample problem.

For the first three iterations only, solve the equation, v = 0.3p(t)—200v under initial conditions v = dv/dt =0, and
for p(t) =300 for all t. Use h =0.02 sec.

t
0.00
0.01
0.01
0.02
0.02
0.03
0.03
0.04
0.04

v
0.00
0.00
0.01
0.02

0.01788
0.04
0.04
0.07

dv/dt f

0.00 90.00
0.90 90.00
0.90 88.20
1.76 86.40
1.776 86.424
2.64 82.87
2.60 81.14
3.40 76.01

0.070096 3.4108672 75.9808064

The data in boldface are the required answers — the first row of the grid of the current iteration given by eqn (2.85)
and (2.86), except for the first row which are the values at t = 0. They are the desired values at t;. The next three
rows are the rest of the grid.
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Response Spectrum

Due to the versatility of the computer, the numerical integration can be used as the main part of a program for
calculating the response spectrum. Though the integration is in the time domain, the M and/or K values can be
changed thereby altering the period or frequency, and for each point the loading is applied as a function of “t”, and
from the results the peak response is noted and stored in a file. The process is then repeated for another period
until a range of periods is covered.

2.2.2.2 Inelastic Load-Deformation (Time Domain)

A A F A
b e £ a b
f . o
o : o Z
d d ¢
Figure 20(a) Figure 20(b)

Consider an experiment performed as shown in Figure 20(a) above. A lateral displacement is applied to a structure
from zero (at “0”) well beyond its yield point, and then the displacement is reversed (at “b”) until the same
displacement is reached but in the other direction (at “d”). Then the displacement is reversed again until the
structure is returned to its original position (at “f’) thus making one complete cycle. When the displacement is
slowly applied, such a test is called a quasi-static or pseudo-static test, and Figure 20(a) is called the loading
protocol. If a test is done without reversing the applied displacement, for example from o-b only in Figure 20(a),
the test is called a monotonic test.

If the resistance is measured simultaneously as the displacement is applied, then a plot of the resistance versus
applied displacement can be traced out as the test progresses, as indicated by 0-a-b-c-d-e-f in Figure 20(b). Such a
shape is called a hysteresis loop. The enclosed area of the loop is the energy absorbed in the structure at the
locations undergoing internal plastic deformation. The loop occurs due to the permanent set or irreversible
deformation that accompanies plastic flow.

The loop shape indicated in Figure 20(b) is the simplest type of cyclic load-deformation shape possible, and is
called elastic perfectly-plastic (EPP). A higher type of deformation, though quite simple, is when the a-b and c-d
are not horizontal but inclined to the deformation axis, thus indicating strain-hardening plasticity. In such a case,
the shape is called bi-linear (BL), and therefore the EPP is a special case of bilinear hysteresis.

The BL and EPP shapes are idealizations of the real nonlinear cyclic or dynamic behavior of structural systems but
they enable more simplified equations for design use. In real nonlinear cyclic or dynamic behavior, the strength of
the system (i.e. the load values along a-b and c-d) changes as the applied displacement continues, as well as the
slopes of b-c and d-e. These phenomena are called strength degradation and stiffness degradation, respectively.
Other important phenomena can occur as well, and interestingly, the degree of degradation at any time depends
on the entire history of degradation before that time. Each type of structural system has its own characteristic
loop shape and degradation types, and degradation rates.
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As discussed earlier, the significance of the inelastic behavior is that it changes the differential equation of motion
as the spring force term is now dependant on the displacement “v” in a non-simple manner.
Representation of the Nonlinear Spring Term

The nonlinear equation of motion is given by,

d?v(t)
dt?

avy

M e +K(v)v(t) =F(t) (2.87)

Clearly, solving eqn (2.87) can only be undertaking via a computer program in which it is necessary to define
K(v)v(t). There are two ways of doing this — (a) the rule-based approach, and (b) the mathematical approach.

The Rule-Based Approach

In the rule-based approach, a function is defined in the computer program that determines what value the load
should be at the current displacement depending on where it was at the last displacement. For example, in Figure
20(b), a rule could be “if the displacement is higher than the displacement at yield, the force is the strength of the
system”. A line is drawn connecting this point to the previous point. Therefore, rule-based approaches to
describing K(v)v(t) result in load-deformation curves that are comprised of straight-line segments. Such curves are
called “piecewise linear”. A well-known rule-based model for reinforced concrete systems has 14 rules and is
called the Takeda model.

The Mathematical Approach

In the mathematical approach K(v)v(t) is defined using formulae. From earlier studies, one such model for steel is
the Ramberg-Osgood model. In more recent times, a particular differential equation model called the Bouc-Wen
model, is used extensively. In these mathematical models, there are a number of parameters that can be
determined from test results. Another noteworthy differential equation model with fewer parameters is the Da
model which is presented herein. Some of the advantages of the mathematical approach are that the resulting
load-deformation curves are smoothly-varying which is more realistic in comparison with the piecewise linear
plots. As they are more compact, dynamics programs that use them are more efficient and easy to maintain, with
this efficiency being much larger when applied to the study of random nonlinear dynamics, especially in
earthquake engineering.

The Da Model describes the cyclic load-deformation relationship for the SDOF system as a differential equation. It
is given by egns (2.89) and (2.90), and drives the governing equation (2.88).

SZ+%(C).(+ZFp/Up):—ag/Up (2.88)
where,

3% :(KF—ljpj(l—D(X,Z)) (2.89)
and,

D(X,Z2) :p—1|:p2 sgn( dX )—2— | sinh (p 4FpZ) [+p3| sinh (p ,FoZ) @ (2.90)
P2 +P3 | Z |
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Z and X are the normalized force (F/F,) and corresponding lateral displacement (U/U,). F,and U, are with respect
to the peak restoring force point of the hysteresis envelope or backbone curve so F, is the capacity or strength of
the structural system, and U, is the corresponding displacement at that point. Kis the initial stiffness. p; to p, are
constants such that p, + ps=1and p, = 1.

3

by = (2.91)
V@ —2)-1

Eqgn (2.88) can be solved by the Runge-Kutta 4™ order numerical integration procedure (RK4). Let,

y1=X (2.92)
Y, =X (2.93)
ys=2 (2.94)
ya=¢€ (2.95)
Hence,

yi =X (2.96)
)/.2=—%(Cyz+y3Fp/Up)—ag/Up (2.97)
y.g =y,D (2.98)

Yi=Y,Y3 (2.99)



