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4 Dynamics of Continuous Systems — Beam Under Lateral Load

In the previous chapters the structure is modeled as a lumped-parameter system and this idealization is clearly far
removed from the actual physical system which is continuous in the three dimensions of space. It is possible to
capture the continuous nature of physical reality for structural dynamic analysis and such models are called
distributed-parameter or continuous systems.

The governing equations of systems modeled as continuous systems are much more difficult to solve
mathematically though in the cases when solution is possible, the solutions are called exact solutions. It is for this
reason, and the reasonably good accuracy obtained, that lumped-parameter models are more common in practice.

It is noteworthy to mention that the method of Finite Element Analysis (FEA) is a go-between in terms of
distributed and lumped parameter modeling. Its wide range of applicability and considerable accuracy makes this
the method most used for advanced dynamics studies. FEA is a numerical method hence requires extensive
computational resources for its use. The mechanical and computational sophistication of FEA implies the need for
specialist training for its effective use.

In this section, the dynamics of a continuous beam of constant section under lateral load is considered. Even for
this most simple of cases, response solution for external dynamic loading is beyond the scope of the presentation.
Furthermore, a simplification is made by neglecting the contribution of shear deformation, rotary inertia, and
damping. The presentation considers loading due to the inertia associated with the distributed self-weight of the
beam. In effect, this is the study of the free vibration of the beam.

4.1 Modeling and Analysis
Recall the free body diagram of the basic engineer’s beam theory or Euler’s beam theory as shown below. This is

for an infinitesimal element along the beam’s length. M, V, and p(x) are the moment, shear, and inertial load per
unit length respectively.
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For vertical equilibrium,
dV-p(x)dx=0 (4.1)
Taking moments about the right face,
dM - Vdx — 0.5p(x)(dx)* = 0 (4.2)
From (4.1),
dv
—=p(x) (4.3)
dx

From (4.2), ignoring higher order effects,
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Combining (4.3) and (4.4),
d’™M dv
== —p(x 4.5
7 =g =P (4.5)
The constitutive relation for a beam is given by,

2
M = E|°‘_\2/ (4.6)
dx

where y is the beam’s deflection and El is its flexural rigidity. Substituting in (4.5) and considering El as constant
along the beam’s length,

El—- = p(x) (4.7)

For harmonic motion, and as damping is neglected, the inertia force per unit length due to self-weight must equal

pw’y, where p is the beam’s mass per unit length. Substituting in (4.7),
4
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El—-—-pn°y =0 (4.8)
dx* P
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Let p* =P2 (4.9)
El
Hence,
d'y .4
—=B"y (4.10)
dx* P

Therefore, (4.10) is the equation of free vibration for the beam.
From (4.9) the free vibration or natural frequencies are given by,

o, =(B,L)> /:—LL (4.11)

where L is the beam’s length. It can be shown that the solution of (4.10) is given by,
y = AcoshPx+Bsinhx+CcosPx+Dsinfx (4.12)

The constants A, B, C, and D are determined by considering the conditions at the ends of the beam. There are an
infinite number of degrees of freedom for a continuous system. However, the natural frequencies for the first
three modes are as shown in the following table for various end conditions. These values are for (B,L)>.

Configuration 1* Mode 2" Mode 3" Mode
Simply-supported 9.87 39.5 88.9
Cantilever 3.52 22.0 61.7
Free-Free 22.4 61.7 121.0
Clamped-Clamped 224 61.7 121.0
Clamped-Hinged 15.4 50.0 104.0
Hinged-Free 0 15.4 50.0

4.2  Approximate Determination of Fundamental Natural Frequency

The Rayleigh method for the calculation of the approximate first or fundamental natural frequency of an MDOF
system was previously considered. The concept can be extended to the continuous beam as well. In such a case,
the Rayleigh frequency is given by,
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where y, = y.(x) which is the assumed deflection profile of the beam.

o; =

Note that in (4.13) p is the mass density of the beam, and it caters for a beam with possible varying cross-section
along its length. vy, is typically chosen to be the same as the beam’s deflection profile under static load. Therefore,
standard texts can be consulted to obtain formulae for the deflection.



