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Introduction – What is “Mechanics of Solids?” 

Mechanics (Greek Μηχανική) is the branch of physics concerned with the behaviour of 
physical bodies when subjected to forces or displacements, and the subsequent effect of 
the bodies on their environment. (Wikipedia). 

Mechanics of Solids is the computation of the internal stresses and deformations within 
deformable solid bodies when subjected to external forces.  
 
Mechanics of Solids is therefore a necessary part of Civil Engineering design in which 
given the calculated stresses, the amounts of materials required to resist these stresses are 
determined based on economics, sustainability, and aesthetics considerations. 
 
In the general context of Civil and Environmental Engineering, Mechanics of Solids has a 
number of interrelated sub-areas as follows, and is therefore an umbrella term covering 
these areas: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the actual usage of Mechanics of Solids, the solid bodies of interest fall into 2 groups – 
structures composed of linear elements (e.g. steel frameworks), and “bulk masses” (e.g 
soils).  In our diagram above both are referred to when we use the terms “structural”, so 
“Mechanics of Solids” is virtually synonymous with “Structural Mechanics”.   
 
“Statics” is that aspect of the Mechanics of Solids in which the focus is on when the solid 
body is in a state of uniform motion or at rest, and under a set of forces which do not 
change and are therefore static.  In “Statics” we apply Newton’s Third Law to determine 
the internal stresses and deformations. 
 
“Structural Dynamics” is that aspect of Mechanics of Solids in which the focus is on 
when the solid body is under a set of forces that change in time and sufficiently quickly 
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that inertia forces also act on the solid body.  Therefore in “Structural Dynamics” we 
apply Newton’s Second Law to determine the internal stresses and deformations. 
 
Both “Statics” and “Structural Dynamics” make use of “Structural Theory” and 
“Structural Analysis”.   In “Structural Theory” mathematical theories are developed 
which account for the means by which a solid body moves internally and develops its 
stresses.  Being mathematical theories, they result in theorems or truths about the inner 
workings of solids.  In “Structural Analysis”, we make use of the theorems of “Structural 
Theory” to develop methods of analysis that directly result in the determination of the 
internal stresses and deformations of the solid (which is the main objective of Mechanics 
of Solids, or Structural Mechanics). 
 
In our Level I UWI Mechanics of Solids course, we familarise ourselves with the most 
basic types of solid bodies under the most basic sets of forces, using the most basic 
structural theories and analyses which enable us to calculate the internal stresses and 
deformations in these bodies. 
 
As a student advances through the Civil and Environmental Engineering program he or 
she is progressively exposed to more complex solid bodies of interest and under more 
complex loads.  The main objective of determining the internal stresses and deformations 
of solids remains the same, but the name “Mechanics of Solids” changes to “Structural 
Mechanics” at Level 2, and “Structural Analysis” in Level 3, in order to handle the 
increased complexity in a more structured fashion. 
 
When conducting library searches, the student may encounter such terms as “Mechanics 
of Materials” or “Strength of Materials”.  These topics are parallel to Mechanics of Solids 
but tend to cover solid bodies of interest of mechanical engineers, such as gears, springs, 
etc. 
 
In Section 1, we examine a systems view of solid bodies of interest in Civil and 
Environmental Engineering. 
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Units of Measurement 
 

In our Mechanics of Solids course, the following Units of Measurement are typically 
employed for the special quantities of interest: 
 

QUANTITY UNIT 
Force Newton (N) 

Moment Newton-meter (Nm) 
Displacement m 

Rotation radian 
Slope radian 

Curvature m-1 
Modulus of 
Elasticity  

Pascal, Pa (N/m2) 

Moment of Inertia m4 
Section Modulus m3 

Stress Pascal, Pa (N/m2) 
Strain Dimensionless 

Shear Modulus Pascal (N/m2) 
Torque Newton-meter (Nm) 

 
These units are commonly used with the following prefixes: 
 

UNIT PREFIX 
Newton (N) Kilo (kN) 

Mega (MN) 
Giga (GN) 

Newton-meter (Nm) Kilo (kNm) 
Mega (MNm) 
Giga (GNm) 

m Milli (mm) 
Centi (cm) 

Pascal (N/m2) Kilo (kN/m2 or kPa) 
Mega (MN/m2 or MPa = 

N/mm2) 
 
 
Kilo = 103; Mega = 106; Giga = 109; Milli = 10-3; Centi = 10-2 
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Convention Used in This Book 
 

To assist the student synthesize the ideas presented in the following sections, as well as 
provide the critical references used in Mechanics of Solids problem-solving, a convention 
is used throughout this book. 
 
This convention is the use of numbered summary phrases called” Important Facts”.  The 
phrase begins with the abbreviation IF followed by the hash character then a number, and 
all letters in bold font.  For example, 
 
IF # 1:  Civil Engineers shape the environments of society. 
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1.0 TYPES OF SOLIDS – A SYSTEMS VIEW OR SEQUENCE OF  

IDEALIZATIONS 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In the built environment of society, there are really only 2 types of solids  - the Bulk 
Mass, and the Framework.  Both types of solids are three-dimensional (3D).  Examples of 
these are shown in Fig. 1.1.  The framework can exist in 2 forms, the one shown in Fig. 
1.1b - called a Space Frame, and the one shown below, called a Space Truss. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

External forces 
called loads, 
acting on body 

Supports 

External forces 
called loads, 
acting on body 

Supports 

(a)  Bulk Mass resisting  
      applied loads 

(b) Framework resisting  
     applied loads 

Fig. 1.1 The Two Main Types of Solids 

Fig. 1.2   Example of a Space Truss 
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Though every solid is 3D in reality, by virtue of their geometrical forms, we represent the 
form in total as the Bulk Mass and the Framework.  Examples of the bulk mass form in 
civil engineering are the pyramids of Egypt, and the soil mass beneath a structure.  
Examples of 3D frameworks are the skeletons of buildings for space frames, and bridges 
for space trusses. 
 
However, there is a much more important reason why we represent forms in these ways, 
and other ways we will soon discuss.  In the calculation of the internal stresses and 
deformations the engineer desires to do so in the shortest time possible.  This is because 
the calculations are part of the service being provided by the engineer to a client, so the 
faster the calculations are performed, decisions can be made sooner, and more clients can 
be serviced in a given time.  With this time constraint, to make the calculations easier, the 
engineer represents the solid as a set of simpler solids and does the calculations for that 
simpler form instead.  This process of representing the actual solid by a simpler one is 
called Idealization.  To simplify things usually requires that the engineer make 
assumptions to ensure that the idealization does not result in calculations that are too 
inaccurate.  The simplified calculations are compared to more complex calculations, or to 
test results in order to show that the simplified calculations are acceptable. 
 
IF # 2 : To simplify calculations in Mechanics of Solids, the engineer idealizes the  

 solid by representing it as a simpler solid (e.g. from a 3D form to a set of 2D   
  forms). 

 
In the reminder of this section, we present the idealizations made in Mechanics of Solids 
for the 3D frameworks of space frames and space trusses, and the important 
characteristics of these simplifications. 
 
It will be seen that the idealization follows a sequence from the more complex 3D form, 
to 2D forms, then to the individual member or element, then cross-sections of the 
element.  Since these are all parts of the one original 3D form, it is called a “Systems 
View” of that form. 
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a. 2D Components (of the 3D): 
 

1. The Plane Frame 
 
Remembering that in Mechanics of Solids our objective is the calculation of the stresses 
and deformations in the solid, if we have the case of a spaceframe, how can be simplify 
the calculations?  Returning to the space frame of Fig. 1.1, the spaceframe can be 
considered as sets of 2D frames, called Plane Frames, in each of the 2 directions in plan 
of the structure.  So instead of analyzing the whole structure, we analyze the plane frames 
only. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1.3   Idealizing a Space Frame as 2 Plane Frames 

Spaceframe 
z 

x 

Plane Frame in x-
direction

Plane Frame in z-
direction

AND 
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2. The Plane Truss 

 
As for the case of the space frame, the engineer can consider the space truss as sets of 2D 
trusses, called Plane Trusses, in each of the 2 directions in plan of the structure.  So 
instead of analyzing the whole structure, we analyze the plane trusses only. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
A plane truss is characterized by its having diagonal members between the ends of 
vertical members as shown above.  The top edge of a truss is called the “top chord”, and 
the bottom edge, the “bottom chord”.  A truss is not necessarily triangular or rectangular, 
and can have any number of vertical members hence diagonals.  Some types of trusses 
are named after their inventors such as the Warren, and Pratt trusses each of which is 
preferred in certain situations. 
 
 
 
 
 
 
 
 
 
 
 
 
 

z 

x 

Plane Truss in x-direction 

AND 

Plane Truss in z-direction 

Space Truss 

Fig. 1.4   Idealizing a Space Frame as 2 Plane Trusses 

Top chord 

Bottom chord 

Diagonal 
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b. 1D Components (of the 2D): 
 

1. The Continuous Beam and Column 
 
We can continue the simplification of space frames and consider the plane frame, which 
is 2-dimensional (2D) as a set of “Continuous Beams”, and “Columns” (also called 
“Stanchions” if they are of steel), which are 1-dimensional (1D) since their form is 
completely defined by their length only. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For the plane frame shown in Fig. 1.5 the continuous beam has 3 spans.  A continuous 
beam can have any number of spans which can be of varying length each – it depends on 
the plane frame we are trying to represent.  The continuous beam is so-called because as 
you go from one end of the beam to the other, the beam continues over the supports.  Of 
course, the supports in the original form (i.e. the plane frame), are really the columns but 
we have taken these out to analyze them separately.  However, we must represent their 
effect on the beam, which is that they act as supports of the beam. 
 

Continuous beam Column 
Plane Frame 

AND 
Span 

Support 

Fig. 1.5   Idealizing a Plane Frame as Continuous Beams and Columns 
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2. The Strut and Tie 

 
Continuing the simplification of the space truss, each member of a plane truss, which is 
2-dimensional (2D), is called a strut or a tie, which is 1-dimensional (1D) since their form 
is completely defined by their length only.   
 
A strut is a member that, for a given set of external forces, is under a set of internal forces 
at its ends trying to reduce the length of the member (i.e. a compressive force).  For a tie, 
the forces at the ends are trying to increase the length of the member (i.e. a tensile force).   
 
At this point, the question may be asked of the difference between continuous 
beams/columns, and struts/ties in Mechanics of Solids since they are both 1D members.  
The reason is that the internal forces of continuous beams/columns are always such as to 
cause the member to bend, but for the struts/ties the internal forces do not cause the 
member to bend.  This affects the ways these elements are analyzed, as we shall see in 
the other sections of this book. 
 
 

c. 0D Components (of the 1D): 
 
 

1. The Cross-Section of Infinitesimal Length 
 
We saw in preceding sections that for the practical reason of simplifying the calculations 
in Mechanics of Solids, a sequence of idealizations of the solid called the space 
framework is made.  This resulted in the substitution of the 3D framework by a set of 1D  
members.  However, since we are ultimately concerned with determining the stresses and 
deformations within the solid, one further idealization is required. 
 
The 1D member can be considered composed of a collection of cross-sections from one 
end of the length to the other.  A cross-section is planar hence has 2 dimensions, but if the 
1D element is to be considered a collection of sections, a section must have a dimension 
in the direction of the length of the member.  This dimension is of infinitesimal length. 
 
 
 
 
 
 
 
 
 
 
 
 

x 

x 

Example 1D element 

Section X-X.  Cross-
section of general shape

Infinitesimal 
thickness, dx

Plane area of 
arbitrary shape 

Fig. 1.6   Idealizing a 1D Member as Set of Sections 
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Since the section is of infinitesimal thickness then for consistency with our nomenclature, 
it is considered zero-dimensional. 
 
 

2. Geometrical Properties of Sections 
 
Now that we have represented the original 3D solid framework by a set of 1D elements 
comprised of sections of infinitesimal cross-sections we can now state the important fact 
that: 
 
IF # 3:  For practical calculations in Mechanics of Solids, the engineer typically  

performs the calculations for 1-dimensional members and their sections as an  
idealization of the original three-dimensional solid.  All the calculations  
of stress and deformation are for a certain section of the 1D member. 

 
The properties of the cross-section are therefore of central importance in the calculation 
of stress and deformations in solids of practical interest.  These properties are geometrical 
properties, sometimes called “mass properties” of the section.  The most important of 
these are: area, centroid, moment of inertia, and from these, the section modulus, and the 
radius of gyration. 
 

2.1 The Centroid or Centre of Area 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Referring to Fig. 1.7, consider a section of arbitrary shape.  The aim is to determine the 
coordinates of the centroid, X and Y.  For a coordinate system x-y, an infinitesimal 
portion of the section dA is located x from the y-axis, and y from the x-axis.  If the shape 
is of area A, then the product of A and the distance of the centroid from the x-axis, Y, 
equals the sum of the product of all dA’s and their distance from the x-axis, y.  Hence, 
 

Fig. 1.7   Section of Arbitrary Shape 

y 

x 

x 
dA 

y Y X 

Centroid 
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AY = ∫  y. dA          (1.1) 
 
Likewise for the distance of the centroid from the y-axis, X, 
 
AX = ∫  x. dA          (1.2) 
 
Equations (1.1), (1.2) are for general shapes.  In practical situations, such as for I, C, L, 
and T-shaped sections, the section is composed of simple rectangular sections combined 
together.  In such cases, we can replace the integrals of (1.1), (1.2) with summations.  
Hence for such sections we can express (1.1), and (1.2) as, 
 

i

n

1
i yAAY ∑=           (1.3) 

 
where n is the number of simple elements comprising the section and “i” is the i th 
element..          
 

i

n

1
ixAAX ∑=          (1.4) 

 
Hence to calculate the centroid of practical sections, choose any convenient location for a 
x-y coordinate system then use equations (1.3) and (1.4).  Note that the centroid need not 
lie within the solid body of the section (e.g. for L and C shapes). 
 
IF # 4:  To calculate the centroid of practical sections, choose any convenient  

             location for the x-y  coordinate system then use i

n

1
i yAAY ∑=  and  

           i

n

1
ixAAX ∑=   to determine the coordinates of the centroid X,Y.  The centroid  

            does not always lie within the solid body of the section. 
 

 
 

2.2 The Moment of Inertia, Section Modulus, Radius of Gyration 
 
 
Referring to Fig. 1.7, the moment of inertia of the section about the x-axis, termed as 
“Ixx”, and about the y-axis, Iyy, are respectively defined as,  
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dAyI
2

xx ∫=           (1.5) 

dAxI
2

yy ∫=          (1.6) 

 
The moment of inertia is also known as the “second moment of area”.   
 
Note that from (1.5) and (1.6), the values for the moments of inertia depend on where we 
place the x-y coordinate system.  In engineering calculations to calculate the moments of 
inertia the centroid of the section is first determined then the x-y coordinate system 
placed at the centroid. 
 
Example 1.1: 
 
Calculate the Ixx and Iyy for a rectangular section of vertical and horizontal dimensions d 
and b respectively. 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.8 shows the section with the x-y coordinate system placed at the centroid, and the 
coordinates of the corners also shown. 
 
From (1.5), 
 

dAyI
2

xx ∫=  

      bdyy
2

∫= dyyb
2

∫=  

      [ ] 2/d
2/d

3 3/yb −=  

      [ ]3/))2/d()2/d((b 33 −−=  

      [ ]3/))8/d()8/d((b 33 −−=  
       = bd3/12          (1.7) 
 

Fig. 1.8   Section of Arbitrary Shape 

y 

x 

(-b/2, d/2) (b/2, d/2) 

(-b/2, -d/2) (b/2, -d/2) 
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Likewise,  
 
Iyy = db3/12          (1.8) 
 
 
The Subtraction Method 
 
(1.5) and (1.6) also imply that if a certain condition is met, the Ixx (and/or Iyy) of more 
complex but practical shapes can be calculated by applying them to the extremities of the 
section including the spaces, but then subtracting the Ixx (and Iyy) for the spaces.  It is 
important to remember that this special case is that the relevant centroidal axis of the 
spaces must be along the same line as the centroidal axis of the section.  Hence this 
subtraction method can be used for hollow circular or rectangular sections, but only for 
the Ixx for I-sections that are symmetrical about the centroidal x-axis. 
 
Example 1.2: 
 
Calculate the Ixx for the I section shown in Fig. 1.9.  The top and bottom flanges and the 
web are all 16 mm thick.  The section is 355 mm deep and 175 mm wide.  The centroidal 
axes of the section are also shown. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The extremities of the section contain 2 rectangular spaces, and the centroidal x-axis of 
these spaces are along the centroidal x-axis of the section.  Threfore, the subtraction 
method can be used to determine the Ixx.  
 
As the Ixx of a rectangle is bd3/12, 
Ixx of the rectangle including the spaces is 175x3553/12 = 6.524x108 mm4. 
The dimensions of each space within the rectangle are 323 mm (i.e. 355-2x16) deep, and 
79.5 mm (i.e. (175-16)/2) wide. 
 
Hence the Ixx of each space = 79.5x3233/12 = 2.233x108 mm4. 
 

Fig. 1.9   I-section 

y 

x 
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Hence Ixx for the I-section = (6.524 – 2x2.233) x108 = 2.058 x108 mm4. 
 
IF # 5:  The subtraction method of calculating Ixx will only give correct results for   
             hollow rectangular sections, hollow circular sections, or symmetrical I  
             sections. 
 
 
The Parallel Axis Theorem Method 
 
When the subtraction method cannot be used, the “parallel axis theorem” can be used to 
determine Ixx or Iyy. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Consider Fig. 1.10.  About the x’ axis, (1.5) becomes, 
 

dA)by(I
2

'x'x ∫ +=  

dAbdAyb2dAy
22

∫∫∫ ++=  

 
If the x-y coordinate system is placed at the centroid, the middle term equals zero, hence, 
 

AbIdAbdAyI 2
xx

22
'x'x +=+= ∫∫       (1.9) 

 

X 

y 

x 

x 
dA 

y Y 

Centroid 

y’ 

x’ 

b 

a 

Fig. 1.10   Moments of area about parallel axes 
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Likewise, 
 

AaII 2
yy'y'y +=          (1.10) 

 
 
(1.9) or (1.10) is applied by first determining the centroid of the overall area, then 
breaking up the section into parts each with a known formula for Ixx.  Then (1.9) can be 
written as, 
 

)AbI(I i
2

ii,xx

n

1
'x'x +=∑           (1.11) 

where n is the total number of parts, i is the “i” th part, bi is the vertical distance from the 
centroid of the ith part to the centroid of the overall area, and Ai is the area of the ith part. 
 
Example 1.3: 
 
Re-calculate Example 1.2 but using the parallel axis theorem method. 
 
 
 
 
 
 
 
 
 
 
 
The section is broken up into three rectangular sections as shown.  We already know that 
in this case the centroid is at the intersection of the axes of symmetry of the overall 
section. 
 
Applying (1.11) we get, 
 
Ixx = 175x163/12 + (355/2 – 16/2)2 x 175x16 +    (this line for part 1) 
         16x(355-2x16)3/12 +      (this line for part 2) 
         175x163/12 + (355/2 – 16/2)2 x 175x16     (this line for part 3) 
     =  2.058x108 mm4 
 
 
 
 
 
 
 

1 

2 

3 
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IF # 6:  The parallel axis theorem method of calculating Ixx is given by  

             )AbI(I i
2

ii,xx

n

1
'x'x +=∑ .  It may be used if the conditions for using the  

             subtraction method are not met and is very convenient if the Ixx for the parts  
             can be determined from formulae. 
 
Section Modulus 
 
The section modulus about the centroidal x-axis is termed as Sx and is given by, 
 
Sx = Ixx/Y          (1.12) 
 
Likewise, 
 
Sy = Iyy/X          (1.13) 
 
Y and X are the maximum distances from the centroidal x and y-axes respectively.  The 
section moduli are very important in the calculation of the internal bending stresses on 
sections. 
 
Radius of Gyration 
 
The radius of gyration about the centroidal x-axis is termed as rx and is given by, 
 
rx =  √(Ixx/A)          (1.14) 
 
Likewise, 
 
ry =  √(Iyy/A)          (1.15) 
 
A is the area of the section.  The radius of gyration is very important in the study of 
columns and struts. 
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d. The Supports and Joints – Where Components Meet 

 
Though not a part of a solid body, all solid bodies of interest in civil engineering are 
supported by something as indicated in Fig. 1.1.   The supports of the solid body can be 
regarded as the points where the body meets the external world.   
 
In the case of a bulk mass like a pyramid, the support is obviously the soil beneath the 
mass.  The soil mass however can also be regarded as a solid deformable body since it 
experiences internal stresses when supporting the pyramid.  In this case, you may ask 
what is the support for that soil mass?  With increasing distance from the pyramid’s base, 
within the soil mass the internal stresses continually decrease and eventually are so small 
that beyond that portion of the soil mass it is not affected by the pyramid.  This portion of 
the overall soil mass that does not deform hence experience internal stress, is the support 
for the portion of the soil that does experience internal stress. 
 
In the case of frameworks, their individual 1D components (i.e. the beams for plane and 
space frames, and the ties/struts for plane and space trusses) meet one another at the 
joints.  Another word for joint is “node”.  Although internal, the joint can be considered 
to function like an internal support for the members connected to it.  In this way supports 
and joints are similar.   More importantly, supports and joints are also similar because the 
reactions within them are the first quantities the engineer must calculate in order to 
subsequently calculate the stresses and deformations within the 1D components. 
 
IF # 7:  The reactions at supports and joints are always the first things the engineer  
              must calculate for a framework under applied forces. 
 
Though supports and joints are similar, the supports have a special duty - they provide the 
reactions to the external applied forces that are needed to ensure that the solid body is not 
unstable.  An unstable body is one which will move off its supports when external forces 
are applied. 
 
IF # 8:  Supports have the special function of providing the reactions to the external  
             applied forces that are needed to ensure that the solid body will not move off  
             its supports when external forces are applied. 
 
It is therefore very important for us to know what kind of supports exist, and what 
reactions they provide.   
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1. Types of Supports in 2D: 
 
In this section we discuss some of the main types of supports for 2D solids. 
 

1.1 The Roller Support 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.11 (a) shows the typical symbol for a roller support, and (b) shows the meaning of 
the symbol.  As indicated in (b), the base of the structure’s member is represented by the 
top horizontal line, the rollers by the circles, and the firm ground by the bottom 
horizontal line and the slanting lines.   
 
The presence of the rollers means that if a force is applied from the base in the x-
direction, the support cannot resist this force since the rollers will cause the structure to 
slide on the ground.  However, a vertical force acting downwards (-y-direction) will be 
resisted by a vertical reaction acting upwards (+y-direction) due to the presence of the 
firm ground.  Of course, if the vertical force from the member was acting upwards, the 
vertical reaction will act downwards.    
 
We used rollers to cause the member to be able to slide horizontally, but we can use other 
devices.  Instead of a roller another common device causing the same effect is a smooth 
frictionless surface. 

Fig. 1.11   The Roller Support 

y 

x 

Base of a member 
of the structure

Roller (e.g. steel rod) 

Firm ground 
Vertical reaction 

(a) Typical symbol for Roller Support 

(b) Interpretation of Roller Support 
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Therefore, a roller support can provide only one reaction. 
 
 

1.2 The Pinned Support 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The pinned support is also called a “hinged” support.  The key thing is that at the end of 
the member there is a pin or hinge.  This has the effect of allowing the member to rotate 
at the point where the member meets the support (like a door hinge does).  Because of 
this, the support cannot resist this rotation.  However, the support resists sliding in a 
horizontal direction and can develop a reaction in that direction.   
 
Therefore, a pinned support can provide two reactions (one vertical and one horizontal). 
 
 
 
 
 
 
 
 

Fig. 1.12   The Pinned Support 

(a) Typical symbol for Pinned Support 

(b) Interpretation of Pinned Support 

y 

x 

Pin or hinge at end of 
member

Firm ground 
Vertical reaction 

Member  

Horizontal reaction 
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               1.3 The Fixed Support 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The fixed support is similar to the pinned support except that at the end of the member, 
there is no pin to allow the member to rotate.  Therefore at the based of the member, the 
support provides a resistance or reaction to rotation.  As for the other types of support, the 
directions of the reactions depend on the directions of the applied forces. 
 
Therefore, a fixed support can provide three reactions (one vertical, one horizontal, and 
one rotational). 
 
 
 
 
 
 
 
 
 

Fig. 1.13   The Fixed Support 

(b) Interpretation of Fixed Support 

(a) Typical symbol for Fixed Support 

y 

x 

No pin or hinge at 
end of member

Firm ground 
Vertical reaction 

Member  

Horizontal reaction 

Rotational reaction 
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IF # 9:  Roller supports (including frictionless surfaces) provide 1 vertical   
             reaction.  Pinned supports provide 1 horizontal and 1 vertical reaction.   
             Fixed supports provide 1 horizontal reaction, 1 vertical reaction, and a  
             rotational reaction. 
 
 
 

2. Types of Joints in 2D: 
 
As stated earlier, joints and supports are similar in that they both provide the reactions to 
the applied forces.  However, the important difference with joints is that they can enable 
forces to be transferred across the joint to the other members that meet at the joint.  This 
is how structures work and the bulk of what we learn in structural mechanics centers on 
this phenomenon.  Once we know the reactions at the ends of the members, it is then very 
easy to calculate the internal stresses and deformations at any section of the member.  We 
examine this in greater detail in subsequent sections. 
 
 

2.1  The Rigid Joint 
 
 
A rigid joint is a joint in which all the members meeting at the joint rotate by the same 
amount when the forces are applied to any of the members.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

θ

Fig. 1.14   The Rigid Joint 

(a) Before forces applied (a) After forces applied 
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For example, in Fig. 1.14, 4 members meet at the joint as shown in (a).  After forces are 
applied however (not shown), the arrangement is as shown in (b).  Notice that all the 
members have rotated clockwise by the same amount θ.  Hence the joint is a rigid joint.  
Furthermore, for a rigid joint the angles between the members remain the same before 
and after the load is applied, even if the joint rotates. 
 
As in the case of the fixed support of section 1.3, a member at a rigid joint (we also say a 
“rigidly connected” member) will have a rotational reaction where the member meets the 
joint. 
 
In real structures, concrete frames typically have rigid joints.  In steel-framed structures, 
special construction is required to create a rigid joint. 
 
However, in the case of any beam which is continuous over the supports, then at each 
support the intersection of the beam and the support acts like a rigid joint hence there are 
always rotational reactions in the beam at either side of each support.  This is shown in 
Fig. 1.15 below.  Note that the leftmost joint is a pinned joint since the beam is not 
continuous over the support there. 
 
 
 
 
 
 
 
 
 
 
 
IF # 10:  A rigid joint is a joint in which all the members meeting at the joint rotate  
               by the same amount when the forces are applied to any of the members. 
 
 
 

2.2  The Pinned Joint 
 
A pinned joint is a joint where all the members have pins or hinges at their ends, similar 
to the pinned support of section 1.2.  The pin has the effect of preventing the member 
from causing the joint to rotate if a force is applied to that member.  Hence pinned joints 
do not rotate, but they can move (i.e. translate) to a point in the plane.  Note also that 
though the joint does not rotate, a member can rotate if a force is applied on the member. 
 

Pinned joint Rigid joint Rigid joint Free joint 

Roller supports Pinned support 

Fig. 1.15   Joints in a Continuous Beam 
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Most planar trusses have pinned joints. 
 
 
IF # 11:  A pinned joint is a joint where all the members have pins or hinges at their  
               ends, with the effect of preventing the member from causing the joint to  
               rotate if a force is applied to that member.   
 
 

                2.3  The Free Joint 
 
An example of a free joint is shown in Fig. 1.15.  Hence a free joint has only one member 
connected to it (in its plane) and no support below.  A free joint has no translational (i.e. 
horizontal or vertical) or rotational reactions and therefore moves freely without any 
restraint.  They are quite practical for example in providing overhanging floors or eaves 
to prevent the ingress of rain. 
 
 
IF # 12:  A free joint has only one member connected to it (in its plane) and no  
               support below. 

Fig. 1.16   The Pinned Joint 

(a) Before forces applied (a) After forces applied 

x 

y 
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2.0 FORCES AND STATIC EQUILIBRIUM 
 
In section 1.0 we examined what we mean by a solid and said that there are basically 2 
types – frameworks and the bulk mass.  We also noted that to simplify the calculations 
frameworks are idealized as collections of subsets of the frameworks called frames and 
trusses, then further into beams and ties/struts respectively. 
 
For the remainder of this course (with the exception of the last section) we focus on 
continuous beams and trusses as our solids of interest.   
 
Noting that we stated our activity in “Mechanics of Solids” as the calculating of the 
stresses and deformations within solids when under the action of external applied forces 
or loads, in this section we examine the forces on the structure and the conditions for the 
balance of these forces, also called the equilibrium of the structure. 
 
 

a. “The forces are external; the stresses/deformations internal” 
 

The title of this section -  “The forces are external; the stresses/deformations internal” is 
meant to immediately draw attention to the essential features of any structure in terms of 
the forces acting on it.   
 
What must be understood is that the applied forces on the structure induce reactions at the 
supports and joints which also act on the structure as if they are applied forces.  Hence 
both the applied forces and the reactions at the supports and joints are the external forces 
that together generate stresses within the members of the structure.   
 
We may say that for any structure there are 3 kinds of balance of forces occurring.  
Forces that balance each other are said to be in equilibrium.    
 
First, a condition of “external equilibrium” is established when the applied forces on all 
the members of the structure are exactly balanced by the reactions at the supports only.   
 
Second, a condition of “joint equilibrium” is established at each joint within the structure. 
 
Third, a condition of “internal equilibrium” is established when for each member the 
forces (stresses) at each section within the member exactly balance both the applied force 
on the member and the reactions at the joints at the ends of the member.   
 
These 3 kinds of balance of forces occur simultaneously on and in the structure and the 
overall structure is said to be in static equilibrium since it only deforms internally and not 
as a whole, therefore remaining at rest. 
 
The deformations of the structure occur because the material of which the solid or the 
members of the structure are composed deforms under the action of the internal stresses. 
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We have presented the 3 kinds of equilibrium in the order indicated because this is the 
order in which we perform the calculations. 
 
IF #13   Any solid or structure is under a set of external loads comprised of both the  
              applied forces, and the reactions to those forces at the supports and the  

  joints.  The reactions at the supports exactly balance the total applied  
  forces. 

 
IF #14   We may say that there are 3 kinds of balance of forces occurring in a  
              structure – the balance of the total applied forces with the reactions at the  
              supports; the balance of the forces occurring at each joint, and the balance  
              of the internal forces at any section of a member with the forces acting on  
              the member and at the ends of the member. 
 

 
b. Forces – Resultants and Equilibrants: 

 
In the last section we noted 3 types of equilibrium of forces on a structure.  We also noted 
that equilibrium occurs when forces balance each other.  Therefore it is very important 
for us to understand the nature and properties of these forces.   
 
Any set of forces can be combined to form one force called the resultant.  For a body to 
be in static equilibrium (i.e. at rest or uniform motion) the resultant of all forces acting on 
the body must equal exactly zero.  This means that if one set of forces acting on the body 
has a non-zero resultant there must also be another set of forces acting on the body but 
with a resultant equal and opposite to the resultant of the first set of forces, for the body 
to be in static equilibrium.  This second set of forces required to balance the first set, is 
called the equilibrant.   
 
For example, with respect to the first type of equilibrium we discussed earlier, the 
external applied forces have a resultant but the reactions at the supports provide the 
equilibrant for a structure in static equilibrium. 
 
In this section we examine the balancing act between resultants and equilibrants for 2 
classes of force systems – concurrent and non-concurrent.  Furthermore, we limit our 
presentation to forces that are all in the same plane.  Such a force system is said to be 
coplanar. 
 
The practical applications of coplanar forces are the mechanics of 2-dimensional 
frameworks.  In this book, we examine the coplanar forces on continuous beams and 
trusses only. 
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1. Equilibrium of Concurrent Forces  

 
In section 2a it was said that in a structure the forces at the joints are in equilibrium with 
each other (the second kind of equilibrium).  If the structure is a planar truss, then at a 
typical joint the lines of action of the forces all meet at a common point.  Such forces are 
said to be concurrent (they all meet at the same point), and coplanar (they all act in the 
same plane – the plane of the truss). 
 
Calculations for coplanar forces can be done using 2 approaches – graphical or 
mathematical (algebra and trigonometry). 
 
This is because, as we know from elementary physics, a force is completely defined by 
its magnitude and direction and is therefore a vector quantity.  Hence when vectors are 2-
dimensional we can draw them on paper, resulting in the graphical approach.  But,  
vectors can be treated mathematically as they obey the additive, multiplicative and 
transformation laws of vectors, hence the mathematical approach.   
 
In the graphical approach the magnitude of a force is represented by the length of a line 
and the direction is represented by the angle of the line from a convenient axis, and an 
arrow (also called the “sense” of the vector).   
 
Resultants by Vector Addition: 
 
The resultant of a set of concurrent coplanar forces is determined by arranging the forces 
as vectors in such a way that the arrows of all the force vectors follow each other in turn.  
The resultant is then found simply as the vector connecting the start and end. 
 
Example 2.1:  Find the resultant and equilibrant of the following concurrent forces: 
 
 
 
 
 
 
 
Rearranging so that the arrows follow each other (called the head-to-tail rule) in turn we 
get. 
 
 
 
 
 
 
 
 

Resultant 
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This is called a polygon of forces. 
 
A key thing to remember about forces is that it is the net effect of the forces that are 
important and you can arrive at this by combining forces in any manner.   This is the 
same as saying that you can get from the start to the end by any route. 
 
The equilibrant of the forces is simply the force equal and opposite to the resultant.  
Hence the equilibrant must pass through the same point as the resultant.  The resultant 
and equilibrant therefore are a system of concurrent forces. 
 
 
 
 
 
 
 
If this resultant and equilibrant were applied to a body it would remain at rest since they 
exactly balance each other.  For an actual structure, you do not have to apply the 
equilibrant – it automatically arises (if the supports allow) to keep the body in 
equilibrium.  The resultant in this case therefore represents the net effect the external 
forces applied to or imposed on the structure. 
 
Notice in the above figure that the equilibrant and the other forces form a closed polygon 
with the arrows at the sides of the polygon following each other.  Hence we get the 
important fact that concurrent forces in equilibrium always result in a closed polygon of 
forces. 
 
IF #15   Concurrent forces in equilibrium always result in a closed polygon of forces. 
 
 
Special Case of 3 Coplanar Forces in Equilibrium: 
 
If 3 coplanar forces are in equilibrium they must be either (i) parallel forces, or (ii) 
concurrent forces.  The special application of (ii) is that if we know the magnitude of 
only 1 of the forces but the lines of action of the other 2, we can easily draw a closed 
polygon of forces and find the magnitude of the other 2 forces. 
 
IF #16   3 coplanar forces in equilibrium must be either parallel or concurrent  
              forces. 
 
 

Resultant 

Equilibrant 
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Components of a Force: 
 
It is sometimes very convenient when doing calculations to break up a force into several 
forces.  The procedure of breaking up a force into other forces is called resolution, and 
the resulting forces are called components of the force.    If these forces are 2 forces at 
right angles to each other, they are called the rectangular components of the force and 
they are in the horizontal and vertical directions. 
 
Example 2.2:  Find the components of the following force. 
 
 
 
 
 
 
 
 
 
 
 
 
If we examine a force and its component closely, we notice that a force can never have a 
component at right angles to the force.  Put another way - a force never has any effect at 
right-angles to its line of action.  This is one of the most important facts in all of 
engineering mechanics and is called orthogonality. 
 
IF #17   A force can never have a component at right angles to the force. 
 
Resultants by Trigonometry: 
 
The components of a force are given by the sine and cosine of the force.  If we measure 
the direction of the force by an angle θ which is +ve anticlockwise from the horizontal 
axis, then for a resultant R at angle θ, 
 
Horizontal component of R = HR = Rcosθ 
Vertical component of R = VR = Rsinθ. 
 
Hence for the following force of magnitude 5kN and θ = 120 deg 
 
 
 
 
 
 
 
 

Vertical 
component 

Horizontal 
component 

Head-to-tail confirmation that the sum of 
the components equals the force 

5kN 

θ = 120 
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HR = 5cos120 = -2.5 kN 
VR = 5sin120 = 4.33 kN 
 
Notice that when we measure θ as +ve anticlockwise from the horizontal axis, then a –ve 
HR means that its direction is to the left and vice versa, and a –ve VR means that its 
direction is downwards and vice versa. 
 
Also, 
 
R = √( HR

2 + VR
2) and tanθ = (VR/ HR). 

 
 
Conditions of Static Equilibrium for Concurrent Forces: 
 
As for the graphical approach, for static equilibrium the resultant, R, but be balanced by 
the equilibrant, E (equal and opposite to the resultant). 
 
 
 
 
 
 
 
 
 
The only difference between R and E is that for E, θ = -60 deg. 
 
If we add R and E in terms of their components we get: 
 
Horizontal components of R+E = HR + HE = 5cos120 + 5cos(-60) = -2.5+2.5 = 0 
Vertical components of R+E = VR + VE = 5sin120 + 5sin(-60) = 4.33+(-4.33) = 0 
 
Since the resultant can be resolved into any number of forces, and likewise for the 
equilibrant, we have therefore demonstrated that for any set of coplanar concurrent 
forces in static equilibrium, the sum of the horizontal components of all the forces (i.e. 
∑H) is zero and the sum of the vertical components of all the forces (i.e. ∑V) is zero. 
 
IF #18   For a system of coplanar concurrent forces in equilibrium -  
              ∑H=∑V=0 
 
 
 
 
 
 

R 

E 
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2. Equilibrium of Non-Concurrent Forces 
 
The conditions of static equilibrium of coplanar non-concurrent forces are the same as for 
concurrent forces except for one important difference - the need to consider the tendency 
for the non-concurrent forces to cause the body they act on to rotate as a whole.  
Therefore, we need to introduce 2 new concepts - the position of a force, and the 
moment of a force.  For the following we limit our discussion to parallel non-concurrent 
forces, since these are of greater practical interest, especially for beams. 
 
Position and Moment of a Force: 
 
The position of a force is the location of the point of application of the force on the body, 
and measured from a convenient origin. 
 
The moment of a force is a measure of the force’s tendency to cause rotation about a 
point.  It is defined as the product of the magnitude of the force, and the perpendicular 
distance from the line of action of the force from the point. 
 

 
 
Consider the rod above.  The force P is at position “a” from origin O, and the moment of 
P relative to O is Pa.  The typical way of saying this that the moment of P about O is Pa.  
“a” is called the lever arm. 
 
The moment of P about O causes the rod to rotate clockwise about O.   Clearly, this 
system is not in equilibrium since it results in a rotation of the rod, whereas equilibrium 
means at rest. 
 
Now consider several non-concurrent forces acting on the rod. 
 
  
 
 
 
 
 
 
 
 
 

Rod 
O 

P 
a 
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In this diagram P1, P2, and P3 are applied loads, and R1 and R2 are reactions to those 
loads.  Remember, from the standpoint of the rod, all the forces (i.e.  P1, P2, P3, R1 and 
R2) are external forces.  
 
For this system of external forces to be in static equilibrium, the rod must (i) not move up 
or down, and (ii) it must not rotate.  
 
For (i) this means,                                     P1 + P2 + P3 = R1 + R2 
And for (ii) this means,   sum of clockwise moments of all forces = sum of anti-clockwise  
                                                                                                            moments of all forces 
 
Condition (i) is the same as for concurrent forces in that ∑V=0, or P1 + P2 + P3 - R1 - 
R2 = 0 (if we take down as positive). 
 
But for (ii) we have a new condition that is unique to non-concurrent forces - the sum of 
the moments of all forces must equal zero. 
 
At this point the question arises “the sum of moments about which point?”  And the 
answer is, the sum of moments about any point in the plane of the forces.  If we choose 
point O, then we get, 
 
Sum of clockwise moments = (P1xa)+(P2xb)+(P3xc) 
Sum of anti-clockwise moments = (R1xd)+(R2xe) 
 
In other words, (P1xa)+(P2xb)+(P3xc)-(R1xd)-(R2xe) = 0 (if we take a clockwise 
moment as positive). 
 
The reason why it does not matter where we take moments from is that the lever arms of 
all the forces will change proportionately, so we will always get back the same moment 
equilibrium equation. 

d 
R1 

b 
P1 

a 

c 
P2 P3 

R2 
O 

e 
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Hence the new condition of equilibrium for non-concurrent forces is:  ∑Mc =0, where c is 
any point in the plane of the forces. 
 
IF #19   For a system of coplanar non-concurrent forces in equilibrium -  
              ∑H=∑V=∑Mc=0. 
 
 
A Moment as a Couple: 
 
In the same way that it is sometimes convenient in calculations to break up a force into 
components, it is sometimes convenient to break up a moment into a couple. 
 
A couple is a pair of equal but opposite forces separated by a distance or lever arm, a.  
For example, the following clockwise moment M can be considered equivalent to the 
couple Fa. 
 

 
 

M 
F 

F 

a
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c. Statical Determinacy and Geometric Instability: 

 
In section 2a  entitled “The forces are external; the stresses/deformations internal” we 
identified 3 types of equilibrium occurring in a typical structure - (a) the equilibrium 
between the applied loads, (b) the equilibrium of the joints, and (c) the equilibrium of the 
forces (stresses) at any section of a member of the structure.  We consider only (c) to be 
internal since it is within the material of which the member is composed. 
 
Let us look at this for the case of the 2 main types of solids we are concerned with 
throughout our presentation - the plane truss and the continuous beam. 
 

1. Determinacy of Plane Trusses 
 
 

 
 
 
 
 
 
 
 
 
 

RA RB,V 

RB,H 

P1 

P2 

Fig. 2a Example of Equilibrium Type (a) - 
Applied loads P1, P2 balanced by reactions 
RA, RB,V and RB,H 
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Fig. 2b Example of Equilibrium Type (b) - 
The forces meeting at the joint must balance 
each other (i.e. have a zero resultant). 

Fig. 2c Example of Equilibrium Type (c) - 
The forces at any sections of a member must 
balance each other (i.e. have a zero 
resultant). 
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Figs. 2a, b, c are self-explanatory (in b and c only the forces at 1 joint and 1 section are 
shown for simplicity).  However, it must be understood that all the forces shown exist 
simultaneously, but only forces P1 and P2 are the applied forces which are known. 
 
The other forces, that is the reactions RA, RB,V and RB,H , and the forces at the joints, must 
be calculated and is our main purpose.  These are our “unknowns”. 
 
How many “unknowns” are there in general for a planar trusses?  The total number of 
unknowns are (1) the sum of the reactions, plus (2) the sum of the forces at all joints. 
 
Let us call (1) as “r”.  Note that we treat the rectangular components of the reactions as 
individual reactions so in our example r = 3.  (But actually there is only 1 force at B 
which is at an angle to the horizontal and which we get by vector addition of its 
components). 
 
Now if we examine Fig. 2b we notice that at a joint the number of unknown forces is the 
same as the number of members at the joint.  So the total number of unknown forces at 
all the joints of a planar truss is the same as the total number of members of the truss.  Let 
us call this as “m”. 
 
Hence the total number of unknowns is r+m, and this is what we must determine.  Since 
we are using mathematical procedures to calculate for these unknowns, we must have 
enough information to form r+m simultaneous equations. 
 
A statically determinate structure (regardless of the type of structure) is one where we 
can get the information we need by using the statics equations only.  Hence “statically 
determinate” means “determined by using statics only”. 
 
At any joint or support of a truss all the forces are concurrent.  For a truss, we know from 
IF#18, which is the condition of static equilibrium for concurrent forces, that ∑H=0 and 
∑V=0.  This is 2 equations.  Hence the total number of statics equations for a truss is 2j, 
where j is the total number of joints including the supports. 
 
Hence we can now state the condition of statical determinacy for a truss as: 
 
m+r = 2j.  Note that the condition of statical determinacy is independent of the applied 
loads on the structure.  Let us check our truss to see if it is statically determinate. 
 
m = 21  r = 3  j = 12 
 
Hence m+r = 21+3 = 24 and 2j = 2x12 = 24, therefore the structure is statically 
determinate. 
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If m+r>2j, this means that there are more unknowns than the information we have from 
statics for us to get the number of equations we need to solve for the unknowns.  Such a 
structure is said to be statically indeterminate, or redundant, or hyperstatic. 
 
For redundant structures we get the additional equations required by considering the 
geometry of deformation of the structure, resulting in more complex methods of 
calculation.  We are introduced to such structures in Level 2 via the course “Structural 
Mechanics”.  In our Mechanics of Solids course however, we study only statically 
determinate structures. 
 
If m+r<2j the structure is called a mechanism and will collapse if any loads are applied 
to it because there are either an insufficient number of members, or the supports do not 
provide an appropriate number and type of reactions. 
 
This suggests that a statically determinate structure is a stable structure but this is not 
necessarily so as we will examine in the last section of this chapter. 
 
 
IF #20   A statically determinate structure is one where the unknown forces at the  
              supports and joints can be determined by using the equations of static  
              equilibrium only.  For a statically indeterminate structure, also called  
              a redundant or hyperstatic structure, the geometry of deformation of the  
              structure must be considered in order to obtain the remaining equations for  
              solution. 
 
IF #21   For a planar truss the condition of statical determinacy is that m+r = 2j  
              where m is the number of members, r is the number of reactions (after  
              converting to rectangular components), and j is the number of joints 
              including the supports. 
 
IF #22   For a statically indeterminate truss m+r > 2j. 
 
IF #23   If m+r < 2j, the structure is called a mechanism and will collapse under 
              applied loads.  
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2. Determinacy of Beams 

 
 
The determinacy of continuous beams is conceptually similar to that of trusses but with 
notable differences.  Let us examine a typical continuous beam as was done in the last 
section for planar trusses, starting with the 3 types of equilibrium in a structure. 
 
Consider a simple 2-span continuous beam.  Note that though a continuous beam is 
physically really 1 beam, we usually speak of a portion of the beam between supports as 
if it were a separate beam connected to an adjacent beam via the joint over the support.  
(Refer to Chapter 1 Section b1, and Fig. 1.15).  Hence our 2-span continuous beam is 
considered as 2 beams connected via a rigid joint over the central support. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

P2 

Fig. 3a Example of Equilibrium Type (a) - 
Applied loads P1, P2 balanced by reactions 
RA, RB, RC,V and RC,H 

RC,V 

RC,H 

RB RA 

P1 
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Fig. 3b Example of Equilibrium Type (b) - 
At the joint, the Ms must balance each other 
(i.e. have a zero resultant), the Vs must 
balance each other, as well as the Ns  

Rigid 
joint

MAB MBC 

VBC VAB 

Fig. 3c Example of Equilibrium Type (c) - 
At a section, the Ms, Vs and Ns, must 
balance the applied loads and reactions (i.e. 
have zero resultants).  
 

NAB NBC 

Mx Vx 

Nx 
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Figs. 3a, b, c are self-explanatory (in b and c only the forces at 1 joint and 1 section are 
shown for simplicity).  One difference when compared with a truss, is that it may not be 
immediately obvious that the zone of the beam immediately above a support is a joint 
(Fig. 3b). 
 
However, it must be understood that all the forces shown exist simultaneously, but only 
forces P1 and P2 are the applied forces which are known.  The other forces, that is the 
reactions RA, RB,V and RB,H , and the forces at the joints, must be calculated and is our 
main purpose.  These are our “unknowns”. 
 
How many “unknowns” are there in general for a continuous beam?  The total number of 
unknowns are (1) the sum of the reactions, plus (2) the sum of the forces at all joints. 
 
Using the same notation as for the truss discussed in the previous section, “r” is the 
number of reactions, so in our example r = 4.   Likewise, “m” is the number of beams, so 
in our example, m = 2. 
 
Now if we examine Fig. 3b we notice that at the end of a beam there are 3 unknown 
forces - an M, a V and a P.  Since these are 3 forces, the number of unknown forces at the 
joints is the same as 3 times the number of members at the joint.  So the total number of 
unknown forces at all the joints of a continuous beam is the same as 3 times the total 
number of beams.  Let us call this as “3m”. 
 
Hence the total number of unknowns is r+2m, and this is what we must determine.  Since 
we are using mathematical procedures to calculate for these unknowns, we must have 
enough information to form r+3m simultaneous equations. 
 
At any joint of a continuous beam, since a moment is equivalent to a couple (see section 
b2), the forces are non-concurrent.  Hence at a joint in a continuous beam, we know from 
IF#19, which is the condition of static equilibrium for non-concurrent forces, that ∑H=0, 
∑V=0, ∑MC=0.  This is 3 equations.  Hence the total number of statics equations for a 
continuous beam is 3j, where j is the total number of joints including the supports. 
 
Therefore we can now state the condition of statical determinacy for a continuous beam 
as: 
 
3m+r = 3j.  Note that the condition of statical determinacy is independent of the applied 
loads on the structure.  Let us check our continuous to see if it is statically determinate. 
 
m = 2  r = 4  j = 3 
 
Hence 3m+r = 3x2+4 = 10 and 3j = 3x3 = 9, therefore the structure is statically 
indeterminate.  The total number of unknowns minus the total number of statics equations 
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is called the degree of indeterminacy.  Hence our continuous beam has 10-9 = 1 degree 
of indeterminacy. 
 
Special Case of Condition of Determinacy for Continuous Beams: 
 
The condition of determinacy for continuous beams of 3m+r = 3j is the general case in 
that horizontal forces and forces along the length of the member are considered.  This 
arises when there is an applied load that has a horizontal component, such as load P2 of 
our continuous beam. 
 
But this is an impractical situation for a typical beam and it is much more common for 
continuous beams to carry only vertical applied loads.  When this is the case, there is no 
force in the beams along their length, and no horizontal reaction as well.  Hence the 
condition of determinacy becomes: 2m+r = 2j.  Applying this special case to our 
continuous beam we now get 2m+r = 2x2+3 = 7, and 2j = 2x3 = 6, so the degree of 
indeterminacy is 7-6 = 1, as we expect. 
 
Calculations for a continuous beam are therefore beyond the scope of our presentation of 
the Mechanics of Solids since they are statically indeterminate.  However, we do examine 
single-span beams in some detail in Chapter 4, as they are statically determinate. 
 
IF #24   For a continuous beam the condition of statical determinacy is that 3m+r =  
              3j if there are applied loads with horizontal components, but 2m+r = 2j if  
              the applied loads are vertical only, where m is the number of members, r is  
              the number of reactions (after converting to rectangular components), and j  
              is the number of joints including the supports. 
 
 

3. Geometric Instability 
 
It was stated earlier that a statically determinate structure is not necessarily stable.  We 
are referring here to geometric stability in which case if a structure is geometrically 
unstable, the entire structure as a whole will move if a load is applied in a certain 
direction.  When a structure moves as a whole it is called a rigid body motion. 
 
A planar structure will be geometrically stable if for any direction of a load applied to the 
structure its supports can provide (1) a vertical reaction, (2) a horizontal reaction, and (3) 
a rotational reaction.  The latter cannot happen if the lines of action of all its support 
reactions pass through one common point.  This is because an applied force on the 
structure will have a non-zero moment about that point, but that moment cannot be 
balanced by any of the reactions since their lever arms relative to that point are zero.  The 
diagrams below show examples of geometrically unstable structures. 
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A structure can also be internally unstable.  For example in a statically determinate pin-
jointed structure such as a truss, if a joint has members that are all vertical or horizontal 
then that joint will move as a rigid body.  This is because, as we remember from IF #17, 
vertical members will not be able to provide a horizontal reaction, and horizontal 
members will not be able to provide a vertical reaction.  An example of this is shown 
below. 

 
IF #25   A structure may be statically determinate yet be unstable.  The geometrical  
              arrangement of the supports and the members of a structure must be  
              carefully considered to assure a stable structure. 
 
 

Unstable Stable 

The supports cannot resist 
the moment of the applied 
load about O. 

The supports cannot resist 
a horizontal load. 

O 



Mechanics of Solids - CVNG 1000, UWI (2007/08), by r clarke 
 

43

3.0 STATICALLY DETERMINATE TRUSSES – “REACTIONS THEN 
        JOINTS, THEN SECTIONS” 
 
In this chapter we apply what we learned about the equilibrium of concurrent forces to 
determine the forces in the members in a statically determinate truss. 
 
We use the graphical representation of forces to develop the graphical method of solution 
in which we determine the forces by using the facts about the equilibrium of a joint.  The 
graphical methods require drawing the forces to scale so we shall attempt problems 
during our Coursework sessions. 
 
We then present other solution methods based on mathematical calculation.  We examine 
the equilibrium of the joints again but this time we make use of ∑H=∑V=0 to calculate 
for the unknown forces.  Then we present the “Method of Sections”, then lastly, the 
“Method of Tension Coefficients”. 
 
 

a. Finding the Internal Forces (in Planar Trusses) by Joint Equilibrium: 
 
 

3. The Graphical Method: 
 
Recall IF #15 that concurrent forces in equilibrium give rise to a closed force polygon 
when the forces are represented graphically.  Recall also IF# 16 that for any 3 forces in 
equilibrium they must all meet at a common point therefore if we know the magnitude 
of only one of them but the directions of all of them, we can draw a triangle of forces 
and get the magnitudes of the other 2 forces. 
 
Regardless of the (statically determinate) truss we are solving for, the steps of solution 
are always:- 
 
Step 1:  Label the forces in accordance with Bow’s Notation. 
 
Step 2.  Based on IF #15 determine the 2 reactions. 
 
Step 3.  Starting at the pinned support (not the roller support), draw the triangle of forces  
             comprising the reaction, and the forces in each of the 2 members. 
 
Step 4.  Considering the forces already calculated, go to the next joint with only 2  
             unknown forces, and based on IF #15, draw the closed force polygon hence  
             determine the magnitude of the 2 forces. 
 
Step 5.  Repeat step 4 until all the forces are determined.  In the end you have a set of  
             closed polygons connected together. 
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3.1   Bow’s Notation and the Force Polygon for the External Forces 
 
 
In step 1 we said that we must label the forces in accordance with Bow’s Notation.  
Bow’s Notation is simply putting letters and numbers in the spaces between the lines of 
action of all the forces of a structure in equilibrium, regardless of the type of (statically 
determinate) system.  The strength of Bow’s Notation however, is that it is used with the 
“pole” and “rays” to enable a systematic way of drawing a closed force polygon. 
 
Consider the following example.  We do not know the magnitudes of the reactions, but 
we know the line of action of the right reaction since being at a roller support, it must be 
vertical.  It is customary to use capital letters (A, B,…) for external forces, numbers 
(1,2,…) for member forces, common letters for the “rays”, and “O” for the “pole”. 
 
Label the spaces (note that we only have external forces in this case).  When using Bow’s 
Notation to determine reactions we must always proceed towards the reaction with the 
known line of action.  Therefore we must go clockwise in this case.   
 

 
 
The left reaction is then DA, and AB is the 5kN applied load, BC the 8kN applied load, 
and CD, the right reaction.  Since we are going clockwise, we must remain consistent 
through the problem and always go clockwise. 
 
 
 
IF #26  When using Bow’s Notation to determine reactions, we must always start at  
             the support without the known line of action, and proceed toward the 
             reaction with the known line of action.   
 
 
 
 
 
 
 
 

A 
B C 

D 

5kN 8kN 
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Choose a region on the paper and begin the force polygon to scale.  It is typical to use 
common letters in the force diagram. 
 
 

 
 
 
Notice that the succession of the letters in the force diagram gives the sense of the force 
so “bc” is downwards.   Next, choose a point on the paper and label it as “O” - the Pole.  
Then draw lines connecting the vertices of the force diagram to the pole.  These are the  
rays” - oa, ob, etc. 
 

 
 
Next, from IF #26 starting at the left support (the one without a known line of action of 
the reaction), draw lines on the left diagram, called the space diagram, parallel to the 
rays but cutting the line of action of the next force going clockwise.  Hence a line parallel 
to oa must cut the line of action of AB, ob must cut BC, and oc must cut CD.  Use 2 set 
squares to transfer the lines. 
 
  

 

A 
B C 

D 

5kN 8kN 
a 

c 

b 

O 

c 

b 

a 

 

A 
B C 

D 

5kN 8kN 
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The next step is critical - on the space diagram, close the polygon by drawing a line 
which will then be od.  This is not a force polygon and is called the link polygon. 
 

 
 
 
Next, in the “force polygon and rays” diagram, draw a line parallel to od, starting from 
“O” but cutting a vertical line from c on the force polygon.  This gives us force CD.  
Clearly, CD - the right reaction, is upwards as we expect. 
 

 

oc 

oa 

O 

c 

b 

a 

A 
B C 

D 

5kN 8kN 

ob 

od oc 

oa 

O 

c 

b 

a 

 

A 
B C 

D 

5kN 8kN 

ob 
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Now in the final step, we get the left reaction DA, simply by closing the force polygon 
(i.e. by drawing a line from d to the start of the force polygon, a).  Remember that this is 
because for a system of forces in equilibrium, the forces form a closed polygon when 
drawn.  The reactions are in equilibrium with the applied loads, with both being the 
external loads on the system. 
 

 
 
 

d 

od oc 

oa 

O 

c 

b 

a 

 

A 
B C 

D 

5kN 8kN 

ob 

 

d 

od oc 

oa 

O 

c 

b 

a 

A 
B C 

D 

5kN 8kN 

ob 
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3.2   The Force-Polygons at the Joints 
 
Returning to the steps of section 1 for the graphical determination of forces in statically 
determinate trusses, in the last example we showed how to perform steps 1 and 2, which 
apply to statically determinate beams or trusses. 
 
To continue the steps for trusses, these are accomplished simply by using the force 
polygon and adding other closed polygons for each joint.  For trusses, unlike in our 
previous example, when we label the paces between the lines of action of forces, we will 
need to label the spaces between the truss members as well. 
 
Consider the following example which is typical of all trusses.  In order to focus on steps 
3 to 5, we choose an example where the reactions are obvious. 
 

 
 
The truss is statically determinate (m+r = 17+3=20; 2j = 2x10=20) and as the structure 
and applied loads are symmetrical, RA = RB = 15kN (i.e. RB,H = 0). 
 
Apply Bow’s Notation starting from the left support and going clockwise (it does not 
matter if we start here since we already know the reactions, but we must go clockwise for 
all joints).  Then, knowing the lines of action of the forces in the members, but both the 
line of action and magnitude of the reaction at the left support (FA), draw the closed 
polygon of forces, to scale, for the forces meeting at the left support (i.e. IF #16). 
 
 

RB,H 

RA RB,V 

10kN 10kN 

5kN 5kN 
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Since we need the lines of action of the forces, draw the space diagram to scale so that we 
can use 2 set squares to transfer a line to the force diagram.  Hence for the left support, 
we get the closed force polygon shown.  This tells us the magnitude of the forces in the 
members meeting there, and whether the member is under a tensile or compressive force. 
 
 

 
 
 
Since the forces are in equilibrium they must follow each other in turn so we must go 
from “f” to “a” to “1”.  But a1 (i.e. force “a” to “1”), is the force in the diagonal member 
so we know that this forces pushes on the joint.  Similarly, the force in the horizontal 
member, 1f, pulls on the joint.  These are the red arrows.  Since all sections in a member 
must also be in equilibrium, we know the force at the other end of the member but the 
arrow is reversed.  These are the blue arrows.  In the diagonal member the arrows point 
away from each other so the member is in compression.  In the horizontal member the 
arrows point toward each other so the member is in tension.     
 
IF #27  To know whether the force in a truss member is compressive or tensile, if the  
             arrows point away from each other the member is in compression, but if  
             arrows point toward each other, then the member is in tension.  
 
 
We must now choose the next joint to draw its force polygon.  In this case, we must go to 
the joint with the 5kN applied load.  This is because this joint has only 2 unknown force 
magnitudes.  We must always use this rule.  Remember also to use the information about 
previously calculated forces.  For example, at the joint with the 5kN, there are 4 forces - 3 
from the members meeting there plus the 5kN load.  But we know one of them from the 
calculation for the previous joint (the blue arrow), so there are only 2 unknown forcs at 
that joint. 
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a 
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IF #28  In calculating the forces in truss members, to choose the next joint to work   
             on, it must be a joint with no more than 2 unknown force magnitudes. 
 
We proceed like this for the remaining joints, remembering to go clockwise around each 
joint.  The result is shown below for little more then one half of the truss because as the 
truss is symmetrical, the force polygon will be symmetrical about horizontal line 1-f,c. 
 
 
 

 
 
A few points are noteworthy: 
 
1.  The force polygon for a joint typically has an edge in common with the force polygon   
     of another joint. 
2.  A member can have a zero force. 
3.  Under one set of loads a member can be under tension, but under another set of loads,  
     the same member can be under compression.  
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2.   The Algebraic Method: ( ∑H = 0 ;  ∑V = 0 ) 
 
 

In the algebraic method of determining the forces in statically determinate trusses, also 
called the method of joint resolution, we first calculate the reactions by taking moments, 
then, as in the graphical method, we proceed joint-by-joint to a joint with only 2 
unknown forces.  At each joint we simply apply ∑H = 0 and  ∑V = 0, making use of 
trigonometry. 
 
This is best demonstrated by example.  Consider the following symmetrical truss that is 
unsymmetrically loaded.  Bow’s Notation is not needed so we label the joints as shown. 
 

   
 
As the loads are vertical we know that there is no horizontal reaction at B.  To get the 
vertical reactions, take moments about A (TMA A).  Consider an anti-clockwise moment 
as positive (+ve) and the positive directions of the forces are indicated by the coordinate 
system shown: 
 
∑ M=0:   8.76RB - (2.38x1500) - (4.38x1000) - (6.38x800) - (8.76x500) = 0 
                RB = 1990.18 N 
∑ V=0:    RA + RB  - 500 - 1500 - 1000 - 800 - 500 = 0 
                RA = 500 + 1500 + 1000 + 800 + 500 - 1990.18 = 2309.82 N 
 
 
 
 

40° 

95°

E

D

2.38m 

BA 

RA RB 

500N 

1500N 800N 

500N 

1000N 

8.76m 

C

F

V 

H 



Mechanics of Solids - CVNG 1000, UWI (2007/08), by r clarke 
 

52

For all the calculations at a joint, initially assume that all the forces are pulling away from 
the joint.  So if you get a -ve answer for a force, you know the force is in the next 
direction.  As for the graphical method, when you solve for the force in a member at a 
joint, the force at the other end of the member is in the opposite direction.  
 
Joint A: 
 
∑ V=0:    FAC sin40 - 500 + 2309.82 = 0;   FAC = -2814.65 N 
∑ H=0:    FAF + FAC cos40 = 0;   FAF = -(-2814.65) x cos40 =  2156.02 N 
 
To choose the next joint, it must be one with only 2 unknown forces. 
 
Joint C: 
 
∑ V=0:    FCD sin40 - FCF sin(180-95-40) - FCA sin40 - 1500 = 0 
                FCD sin40 - FCF sin(180-95-40) = FCA sin40 + 1500 .   
 
                Noting that FCA = FAC, 
                0.643 FCD - 0.707 FCF = -2814.65x0.643+1500 = -309.82                           (1) 
              
∑ H=0:     FCD cos40 + FCF cos(180-95-40) - FCA cos40 = 0 
                 0.766 FCD + 0.707 FCF  = FCA cos40 = -2156.02                                         (2) 
 
                (0.643+0.766) FCD = -309.82-2156.02= -2465.84 
                FCD = -1750.07 N 
 
                Sub in (1), 
 
                0.643 x -1750.07 - 0.707 FCF = -309.82 
                FCF = -1153.43 N 
 
                
To choose the next joint, it must be one with only 2 unknown forces. 
 
Joint D: 
 
∑ V=0:    -FDE sin40 - FDF - FDC sin40 - 1000 = 0 
                FDE sin40 + FDF = - FDC sin40 - 1000 = 125.29 
 
                0.643 FDE + FDF = 125.29                              (1) 
              
∑ H=0:     FDE cos40 = FDC cos40  
                 FDE = -1750.07 N 
 
                Sub in (1), 
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                FDF = 125.29 + 0.643x1750.07 
                FDF = 1250.59 N 
 
Joint E: 
 
∑ V=0:    -FEB sin40 - FEF sin45 + FED sin40 - 800 = 0 
                -0.643FEB - 0.707FEF = 1925.3   
      
∑ H=0:     FEB cos40 - FEF cos45 - FED cos40 = 0 
                0.766 FEB - 0.707 FEF = -1340.55 
 
                 (0.643+0.766) FEB = -3265.85 
                  FEB = -2317.85 N 
 
                  FEF = (0.766 x -2317.85 + 1340.55)/0.707 = -615.16 N 
 
Joint B: 
 
∑ H=0:    -FBF - FBE cos40 = 0 
                 FBF = 2317.85 x 0.766 = 1775.47 N 
 
Check:  Given the possibility of human error in engineering hand calculations, results 
must be checked.  In this case we use the information at the support we did not start from 
and determine whether the sum of vertical forces is zero, as it must be.  
 
RB - 500 + FBEsin40 = 1990.18 - 500 - 0.643x2317.85 = -0.197 N ≈ 0. 
 
The small difference is due to round-off error. 
 

 
 

 
b.   Finding the Internal Forces (in Planar Trusses) by the Method of Sections: 
 

Another method for determining the forces in plane trusses is the “Method of Sections”.  
This method is used when the forces in only a few members are required such as for 
checking the results of more laborious calculations, or getting the forces in members 
deemed to be under the maximum forces. 
 
IF #29  The Method of Sections is mainly used when only the forces in a few  
              members are required. 
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Like the other methods, the principle under which the Method of Sections operates is the 
laws and corollaries of equilibrium. 
 
In this case, the truss is cut into 2 pieces and one piece examined.  But since the truss 
must remain in equilibrium, at the points where the members are cut, forces are placed in 
the direction of each member.  It is these forces that are calculated.  These forces are 
inserted to represent the effect of the other piece in terms of what is required to maintain 
equilibrium of the whole structure.  Therefore, these forces act as external forces on the 
piece. The cutting into 2 pieces is called “taking a section”, hence the name of the 
method. 
 
The steps involved in applying the Method of Sections are: 
 
Step 1.  Calculate the reactions as you would for the method of joint resolution. 
Step 2.  For the member concerned, take a section in such a way that, in addition to  
             cutting the member, 2 other members are also cut but the lines of action of these  
             2 must intersect.  The section need not be vertical. 
Step 3.  Select a piece (it is common to choose the piece with the fewer external loads) 
             and label the forces at the cut members, as well as all the applied loads and  
             reactions. 
Step 4.  Apply the equilibrium equation ∑M=0, by taking moments of all the forces  
             (applied loads, reactions, and those inserted at the members), but about the point  
             of intersection mentioned in step 2. 
Step 5.  Step 4 results in 1 equation with 1 unknown which is then easily solved. 
 
As an example, refer to the previous problem.  What is the force in member AF?   
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Taking moments about C:  (The distances are determined from the geometry of the truss; 
take clockwise as +ve). 
 
Clockwise:             F1x2.38tan40 + 2309.82x2.38 
Anti-clockwise:      500x2.38 
 
Hence                    F1x2.38tan40 + 2309.82x2.38 = 500x2.38 
                              1.997F1 = 500x2.38-2309.82x2.38 = -4307.37 
                              F1 = -2156.92 N 
 
This compares well with the joint resolution calculation of 2156.02 N.  However the 
problem is not complete until we determine if the member is in tension or compression. 
 
The negative sign for the calculated value of F1 indicates that actual sense of the force is 
opposite to that assumed for the calculation.  And since F1 is an external force, this 
means that the member is being pulled, hence in tension.  This is also in agreement with 
the calculation via joint resolution for the same member. 
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c.   Finding the Internal Forces (in 3D Trusses) by the Method of Tension  
      Coefficients: 

 
In this section we complete our presentation of structural analysis methods for statically 
determinate plane trusses with the Method of Tension Coefficients. 
 
In essence, the Method of Tension Coefficients is the same as the method of joint 
resolution presented previously, but applied to 3D pin-ended structures.  Though rarely of 
practical application, it is thought necessary to familiarize students with the method in 
order to train thinking in 3D (after all, the 2D structures are merely idealizations), as well 
as to extend the intuition developed by studying the equilibrium of concurrent forces in 
2D, to the 3D space. 
 
The tension coefficient is the force in the member divided by its 3D length.  By using the 
tension coefficient it becomes much easier to build up the equilibrium equations without 
calculating sines and cosines. 
 
For 3D trusses the equation expressing the condition of statical determinacy is m+r=3j.  
In this equation, there are 3 reactions per support (1 vertical and 2 horizontal), and 3 
equilibrium equations per joint (∑V=∑H1=∑H2=0).  These result in simultaneous 
equations for the whole structure excluding the supports hence it is not necessary to first 
calculate reactions as you would for the joint equilibrium method. 
 
 
To apply the Method of Tension Coefficients, the following steps are used: 
 
Step 1.  Draw the structure in plan and elevation views. 
Step 2.  Calculate the 3D length of the members (L = √(∆x2+∆y2+∆z2)). 
Step 3.  For each joint assume that each member pulls away from the joint and represent  
             that force by the tension coefficient (e.g. TAB for the tension coefficient of  
             member AB). 
Step 4.  For each joint apply ∑V=∑H1=∑H2=0 using a convenient coordinate system, but  
             instead of using trigonometry directly, refer to the views of the structure from  
              step 1, and use the projected length of the member as the number in front of the         
             tension coefficient. 
Step 5.  Solve the simultaneous equations arising from step 4, and get the force in the  
             member by multiplying the calculated tension coefficient for the member by its  
             3D length.   
Step 6.  As for the method of joint resolution, determine if the member is in tension or  
             compression. 
Step 7.  Determine the reactions at the supports from the member forces (using  
              trigonometry). 
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Though apparently lengthy, the procedure is quite simple to perform.  Consider the 
following example.  The structure has 2 applied forces: 30 kN vertically downwards at 
joint E, and 20 kN horizontally (i.e. the z direction) at joint F.   
 
 

 
 
 
Member lengths: 
 
AE = BE = CF = FD = √(42+22+42) = 6.0m; EF = 4.0m 
DE = √(42+62+42) = 8.246m 
 
Joint E: 
 
x:  -2TEA - 2TEB + 4TEF + 6TED = 0       (1) 
y:  -4TEA - 4TEB - 4TED -30 = 0      (2) 
z:  -4TEA + 4TEB - 4TED = 0       (3) 
 
Joint F: 
 
x:  -4TFE + 2TFC + 2TFD = 0        (4) 
y:  -4TFC - 4TFD = 0        (5) 
z:   4TFC - 4TFD + 20 = 0       (6) 

D,C
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Solving equations (1) to (6) we get: 
 
TEA = TED = -15/8 
TEB = -15/4 
TEF = 0 
TFC = -2.5 
TFD = 2.5 
 
Hence, 
 
FEA = -(15/8)x6 = -11.25 kN 
FED = -(15/8)x8.246 = -15.461 kN 
FEB = -(15/4)x6 = -22.5 kN 
FEF = 0 
FFC = -2.5x6 = -15 kN 
FFD = 2.5x6 = 15 kN 
 
Vertical reactions: 
 
Considering the angle of the member from the vertical and in the plane of the member, 
 
VA = (4/6)x11.25 = 7.5 kN 
VB = (4/6)x22.5 = 15 kN 
VC = (4/6)x15 = 10 Kn 
VD = (4/8.246) x 15.461 - (4/6) x 15 = -2.5 kN 
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4.0 STATICALLY DETERMINATE BEAMS – “REACTIONS THEN  
            SECTIONS” 
 
Beams are solid bodies that deform mainly by bending when loads are applied to them.  
If an engineer is to appropriately select a beam to resist the applied loads, then it is 
necessary to determine the stresses developed within the beam due to those loads. 
 
Recall IF #14: 
 
             “We may say that there are 3 kinds of balance of forces occurring in a  
              structure – the balance of the total applied forces with the reactions at the  
              supports; the balance of the forces occurring at each joint, and the balance  
              of the internal forces at any section of a member with the forces acting on  
              the member and at the ends of the member.” 
 
With respect to the underlined portion, recall also Fig. 3c reproduced below. 

 
The point to note here is that if you take a section anywhere along the beam you get 2 
pieces.  However to maintain the original equilibrium of the beam we must insert external 
forces at the ends of each of the 2 pieces, and these added forces must be in equilibrium 
with the applied loads and reactions.  (Remember we did this also for the Method of 
Sections for trusses).  The moment Mx and vertical force Vx  are referred to as the 
applied moment and applied shear force at section x and since they are in equilibrium 
with the external loads, are a function of the applied loads (P) and reactions (R) only.   
 
It is important to notice here that we can use either the left piece OR the right piece to 
calculate Mx and Vx by applying the statics equations ∑M = ∑V = 0 to that piece. 
 
As was indicated in Chapter 2, the above beam is statically indeterminate therefore 
additional methods are required to calculate the unknown reactions and forces at the 
joints.  However, once these are determined, we then have all the external forces on the 
beam so can calculate the Mx and Vx at any section by using the statics equations only. 
 

Mx Vx 

Nx 

P1 P2 

RA RB 
RC,V 

RC,H 

Fig. 4.1 
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The scope of our Mechanics of Solids course is limited to statically determinate beams 
therefore the beam is single-span and the unknowns are reactions only which are 
determined by statics only.  In calculating the Mx and Vx for statically determinate beams, 
the sequence of calculations is therefore that we first calculate the reactions, then the 
section forces (Mx, Vx), hence the title of this chapter - “reactions then sections”. 
 
As the beam is a set of sections, the distributions of Mx and Vx along the length of the 
beam are our primary concern.  The aim of this Chapter is to present graphical and 
algebraic methods for determining these distributions called the bending moment diagram 
(BMD), and shear force diagram (SFD), respectively  
 
 

a. Shear Force (V) and Bending Moment (M): 
 

1.1   Sign Convention for V and M 
 
Notice that at the section of the beam above there are 2 Ms and 2 Vs.  Recall also that in 
Chapter 1 Section 1.c.1 (Fig. 1.6), we referred to a section as a 1D component.  This is 
meant to represent the fact that at a section there are 2 equal and opposite forces 
representing the equilibrium of the structure to the left and right of the section. 
 
At the section, the shear force V is tending to deform the material in the vicinity of the 
section in either of the following ways (the dashed line is the original undeformed shape): 
 

 
 
The typical sign convention for a shear force is that if the shear deformation is as shown 
on the left, the shear force V causing this is called positive, but if as shown on the right, 
the shear force V is considered negative.  This is usually encapsulated by the phrase “up 
to the left and down to the right is positive”.  Notice that shear is characterized by the 
change in angle at the corners of the box from being right angles in the original 
undeformed state.  
 
 

Positive Vx Negative Vx 
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At the section, the bending moment M is tending to deform the material in the vicinity of 
the section in either of the following ways (the dashed line is the original undeformed 
shape): 
 

 
 
 
The typical sign convention for a bending moment is that if the bending deformation is as 
shown on the left (called a “sagging” deformation), the bending moment M causing this 
is called positive, but if as shown on the right (called a “hogging” deformation), the 
bending moment M is considered negative.  This is usually encapsulated by the phrase 
“sagging is positive”.   
 
Looking at the shear again, and examining Fig. 4.1 above, a positive V is downwards if 
the rest of the beam is on the left, but also, a positive V is upwards if the rest of the beam 
is on the right. 
 
Likewise, a positive M is anti-clockwise if the rest of the beam is on the left, but also, a 
positive M is clockwise if the rest of the beam is on the right. 
 
IF #30  The sign convention for V is: “up to the left and down to the right is  
             positive”.  This also means that a positive V is downwards if the rest of the  
             beam is on the left, but upwards if the rest of the beam is on the right. 
 
 
 
IF #31  The sign convention for M is: “sagging is positive”.  This also means that a  
             positive M is anti-clockwise if the rest of the beam is on the left, but  
             clockwise if the rest of the beam is on the right. 
 
 
 
 

Positive Mx Negative Mx 
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b. Shear Force Distribution at Section x, Vx, and Bending Moment Distribution 

at Section x, Mx by the Graphical Method: 
 
 

1.  Equilibrium of an Infinitesimal Beam Length 
 

If we take an infinitesimal length of a beam which is bending under an applied load q per 
unit length, this beam length must be in equilibrium.  Hence q must be in equilibrium 
with V and M at both ends of the length.  Now because the beam length is deforming, the 
V and M at one end, must be different from the V and M at the other end.   
 

 
     Fig. 4.2 
 
It is usual to take the origin of the coordinate system that defines the location of a section 
(i.e. x) as the left end of the beam.  This is because it is consistent with the definition of 
positive V and M . 
 
For equilibrium ∑M=0 and ∑V=0.   
 
∑M=0: 
Taking moments about the right edge, 
M - (M+dM) + V dx - q dx (dx/2) = 0 
Neglecting higher order quantities, the fourth term is eliminated and we get, 
-dM + V dx = 0,      hence 
V = dM/dx 
dM = V dx 
 

V+dV 

M+dM M 

V 

q 

dx 

x 
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M = ∫ V dx          (1) 
 
 
∑V=0: 
V - q dx - (V+dV) = 0, hence  
-q dx - dV = 0 
dV = - q dx 
 

V =  ∫ -q dx          (2) 
 

 
 
2.  The Shear Force Distribution (Vx = - ∑ forces q to left of x) 
 

In equations (1) and (2), the integral is a definite integral with the upper limit as x, and 
the lower limit as 0.  Since an integral is a summation, equation (2) can be re-written as, 
 
Vx = - ∑ forces q to left of x        (3) 
 
Equation (3) can therefore be plotted to scale and the result defines the shear force 
distribution. 
 

3.  The Bending Moment Distribution (Mx = Area of SFD to the left 
     of x) 
 

As the integral of a variable y with x equals the area under the curve y=f(x), then from 
equation (1), the area below the shear force distribution, enables the calculation of the 
bending moment distribution.  Hence equation (1) can be re-written as, 
 
Mx = Area of SFD to the left of x       (4) 
 
Hence given a plot of the SFD, the BMD can be easily derived simply by calculating 
areas. 
 
A noteworthy point is that from equation (1), dM/dx = V.  But we know from calculus 
that when dy/dx=0, the value of y is at its maximum value.  Hence at the point on the 
beam where V=0, this is also the point of the maximum bending moment in the BMD. 
 
Lastly, the point on the BMD where M=0 is called the point of contraflexure and has a 
number of uses: (1) for devising approximate solution methods for statically 
indeterminate beams, (2) for determining the best location for joints in beams, and (3) for 
determining when to switch the location of steel in a reinforced concrete beam from the 
top to the bottom face of the beam. 
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IF #32  The shear force at a section x can be determined graphically from,  
             Vx = - ∑ forces q to left of x, where x is measured from the left end of the  
             beam. 
 
IF #33  The bending moment at a section x can be determined from the SFD,  
             by using Mx = Area of SFD to the left of x, where x is measured from the left  
             end of the beam. 
 
IF #34  At the point on the SFD where V=0, the bending moment is at its maximum 
             value in the BMD. 
 
IF #34   The point of contraflexure is the point on the beam where for a given set of  
              applied loads, the bending moment is zero. 
 
 
 
 

c. Shear Force Distribution at Section x, Vx, and Bending Moment Distribution 
at Section x, Mx by the Algebraic Method: 

 
 
In the last section the determination of the shearing force and bending moment diagrams 
by graphical methods was presented.  In this section the same objective is achieved by 
algebraic methods. 
 
Before presenting the procedure, the following are important considerations. 
 
Common Load Types: 
 
 

 
 
 
 

Concentrated 
load 

Uniformly distributed 
load, or UDL 

Patch load 
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The concentrated load can be applied anywhere on the beam, as can the patch load.  
Another symbol for a UDL is that used in Fig. 4.2.  The UDL and patch loads are stated 
per m (e.g 5 kN/m).  Any number, location, or combination of these loads can be applied 
to the beam. 
 
Classification of Load Arrangement: 
 
If more than one concentrated load is applied, or a patch load is applied, the arrangement 
is called discontinuous loading.  Hence continuous loading refers to a loading 
arrangement involving only 1 concentrated load and/or a UDL.  An example of 
discontinuous loading is as follows. 
 

 
 
The procedure of determining the SFD and BMD by the algebraic method is as follows: 
 
Step 1.  Setup a x-y coordinate system at the left end of the beam with positive x going to  
             the right, and positive y going upwards; x defines the position of a section. 
Step 2.  Determine the reactions at the supports by taking moments. 
Step 3.  Cut a section x-x anywhere between the left support and the first applied load on  
              the left. 
Step 4.  Separate out the left piece of the beam and insert the external moment and shear,  
              in their positive directions (anti-clockwise for M; downwards for V), at the right  
              end. 
Step 5.   For that portion of the beam, apply the statics equation ∑V = 0 and make V the  
              subject of the equation.  Similarly, apply ∑M = 0 and make M the subject of the  
              equation.  These equations are the equations for V and M in that portion of the  
              beam only. 
Step 6.   If there is another applied load to the right of the applied load of step 4, cut a  
               new section in the portion of the beam between them and repeat steps 4 and 5. 
Step 7.   For each successive portion of the beam between loads do as in step 6. 
 
Consider the following application of the procedure to derive 2 standard cases.  A 
standard case is one that student is expected to know the formula for by rote. 
 
 
 

Example of discontinuous loading 
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Example 1.  A simply supported beam with a concentrated load P at mid-span. 

 
RA = RC = P/2 
 
For x between 0 and L/2: 
 

 
 
∑V = 0: 
P/2 - Vx = 0 
Vx = P/2 
 
∑M = 0: 
Mx - Px/2 = 0 
Mx = Px/2 
 
For x between L/2 and L: 
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∑V = 0: 
P/2 - P - Vx = 0 
Vx = -P/2 
 
∑M = 0: 
Mx - Px/2 + P(x-L/2) = 0 
Mx = Px/2 - Px + PL/2 = P(L-x)/2 
 
At x = L/2, Mx = P(L-(L/2))/2 = PL/4 
 
 
Example 2.  A simply supported beam with a UDL of w per m. 

 
RA = RB = wL/2 
 

 
 
∑V = 0: 
wL/2 - wx - Vx = 0 
Vx = wL/2 - wx = w(L/2 - x) 
 
∑M = 0: 
Mx - wxL/2 + wx2/2 = 0 
Mx = wx(L-x)/2 
 
 
 

L 
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At V = 0, Mx is at a maximum.  Hence from the equation for Vx, x = L/2.  Hence the 
maximum moment in a simply-supported beam under a UDL is, 
 
Mx,max = w(L/2)(L-L/2)/2 = w(L/2)(L/2)/2 = wL2/8 
 
 
 


