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5.0        STRESS, STRAIN IN TIES AND STRUTS CROSS-SECTIONS  
             
 
a. Direct Stress and Axial Strain: 
 
In Chapter 1 we learned that ties are structural members whose ends are moving apart 
from each other, and struts are structural members whose ends are moving towards each 
other.  In each case this behaviour is due to forces applied externally at the ends of the 
member. 
 
Within the member at any section internal stresses are developed which are tensile in the 
case of ties but compressive in the case of struts.  These tensile and compressive stresses 
are distinguished from each other only by their direction of action, and both are called 
direct or normal stresses in contrast to shear stresses, which were introduced in Chapter 
4.   Direct stresses act on a section at right angles to the section and through its centroid. 
 
The normal stress is simply the force divided by the area of the section.  Hence, 
 
direct stress, σ = P/A        (5.1) 
 
where P is force acting at the centroid of the section, and A the area of the section. 
 
 
 

 
 
 
 

P P 

Tensile stress (note section is in equilibrium) 

σtensile = P/A 

P P 

Compressive stress (note section is in equilibrium)

σcompressive = -P/A 

Fig. 5.1 Definition of Direct Stresses 
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The notion of stress is purely conceptual.  What is observed in nature is the deformation 
of the material.  Consider a bar under tension - the length of the bar increases from 
original length L, to L+∆L when the force is applied. 
 
 
 

 
 
The axial strain, ε = change in length / original length = ∆L/L   (5.2) 
 
The change in length is called the extension or elongation.  Note that it is possible for a 
material to experience strain without stress (e.g. unrestrained thermal expansion or 
contraction), but a material experiencing a stress will experience a corresponding strain.   
Note also that strain is dimensionless.  It is typical to measure strain in terms of micro-
strain, or µε; 1 µε = 10-6 so a strain of 0.00036578 is written as 365.78 µε. 
 
 
 
b. The Constitutive Relation of Ties/Struts: 
 
 
As a tie or strut under an external load experiences internal stresses hence strains, it is 
useful to relate the stress to the strain.   A “constitutive relation” relates the stress to the 
strain in a material.  For many materials, evidence exists that stress is directly 
proportional to strain but each material has a different constant of proportionality. 
 
Hence σ = E ε          (5.3) 
 
E, the constant of proportionality, is called the Young’s Modulus and has units of stress. 
 
The following table shows E values for some common engineering materials. 

∆L L 

P P 

Fig. 5.2  Elongation or Extension of a Bar Under Tensile Load 
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MATERIAL E (GPa) 

Steels 190 to 200 
Copper 110 to 120 
Aluminium 69 to 70 
Brass 100 to 120 
Glass 50 to 70 
 
Substituting (5.1), (5.2) into (5.3) enables us to derive an expression for the extension of 
a tie or rod under a tensile force, P.  Hence if x denotes the extension, 
 
P/A = E(x/L) 
 
x = PL/(AE)          (5.4) 
 
Equation 5.4 is the constitutive relation for ties/struts. 
 
IF #35  The constitutive relation of ties and struts is x = PL/(AE).       
 
 
1.  Extension of a Bar Under a Load and Including Self-Weight 
 

 
 
The self-weight W acts at the center of gravity of the rod 
which is L/2 from the top, so the extension due to W is 
WL/(2AE).  Hence the extension due to both W and P 
 
= WL/(2AE) + PL/(AE)    (5.5) 
 
 
 
 
 

2.  Extension of a Tapered Bar 
   
The bar has a radius ro at the top, r1 at the bottom, and r at a 
section x from the top, which is at the middle of an infinitesimal 
length , dx. 
 
r = ro - (ro - r1) x/L 
If the infinitesimal length extends an amount du due to the load P 
then from equation 5.4,  

 
du/dx = P/(Ax E) where Ax = π(ro - (ro - r1) x/L)2 
 

L/2 

L/2 

P 

W 

L 

P 

x

dx 
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The total extension in the bar, u = (P/ πE) ∫ dx/[ π(ro - (ro - r1) x/L)2], with the integration 
between limits of 0,L.  Hence, 
 
                                                 u = (PL/ π E ro r1)      (5.6) 
 
 
c. Axial Stress-Strain Behaviour: 
 
In our task as civil engineers of shaping the built environment, it is necessary to use 
materials in ways that place significant stress on them.  It is therefore of vital importance 
that civil engineers be aware of the behaviour of these materials when loads are applied.   
 
Of special concern is the behaviour of the material when a tensile load is applied.  This is 
because tension causes cracking in the most cost effective building materials - concrete, 
and masonry, which typically occupy 95 percent of all the materials used in a building or 
non-building structure.  The weakness of concrete and masonry is overcome by using 
them in conjunction with metals such as steel, which is strong in tension.  The behaviour 
of steel, the most commonly used construction material, in tension must be well 
understood if it is to be used effectively.  Also, the behaviour of steel in tension displays 
a number of phases enabling us to gain insight into tensile behaviour in general. 
 
Consider the following graph of the typical stress-strain behaviour of a steel rod. 
 

 

E 

Elastic range Plastic range 

Ultimate tensile 
stress

Yield stress 

A 

O 
ε 

σ 

Limit of 
proportionality

Fracture  
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Fig. 5.3 
 

If a steel rod is tested under a tensile load from zero to fracture, and the data points are 
plotted, the result is similar to the curve shown in Fig. 5.3.  There are 3 distinct phases - a 
linear portion of the curve from O to A followed by a small “hill” region; a gradual rise to 
a plateau region, then a downward slope to fracture. 
 
Point A at the end of the linear portion is called the limit of proportionality.  The peak 
of the little hill is called the yield point and the corresponding stress and strain called the 
yield stress and yield strain respectively.  The subsequent gradual rise is called strain 
hardening, and the maximum stress in the plateau region is called the ultimate tensile 
stress. 
 
The mechanical properties of interest are the Young’s Modulus (previously discussed) 
which is the gradient of the linear portion, the yield stress, σy, and the ultimate tensile 
stress σu.   
 
When the load is within the linear range, if the load is reduced back to zero, the 
elongation also reverses along the original curve to zero value at zero load.  Such 
behaviour is termed “linear elastic”.   However, when the load is beyond the linear range, 
if the load is reduced back to zero, the elongation also reverses but not along the original 
curve and not to a zero value at zero load.  This extra strain or elongation is called 
permanent set and indicates that the material experienced plastic deformation.  Hence 
the zone of behaviour beyond the yield point is called the plastic range. 
 
The length of the curve in the plastic range indicates the ductility of the material.  This is 
the most important property of a material for giving earthquake resistance to a structure.  
After the test, the percent elongation of the rod, and the percent reduction of area of 
the section where fracture takes place, also indicate the ductility of metals.  For the latter, 
when the material is close to fracturing, the diameter of the rod near the section where 
fracture occurs continually reduces.  This is called necking. Clearly steel has excellent 
ductility.  The shorter the plastic range the less the ductility and the more the brittleness 
of the material making brittleness the converse of ductility.  A brittle material has an 
elastic range only and fractures at the end of that range.  Concrete and masonry are brittle 
and weak in tension unless reinforced with steel. 
 
The area below the curve in the plastic range is called the toughness of the material and 
is a measure of the ability of a structure built with the material to withstand impact type 
forces. 
 
 
d. Allowable Stress 
 
The allowable stress, also called the working stress or permissible stress, is the level of 
stress that we decide we will not subject the material to.  In other words, we will use the 
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material in such a way that the applied stress due to the applied loads will be less than the 
allowable stress. 
 
We limit the applied stress to no more than the allowable stress mainly when we believe 
that it will be too dangerous to subject the material to higher stresses.  The allowable 
stress is not the stress beyond which the material will fracture.  Fracture occurs at the end 
of the curve as indicated in Fig. 5.3. 
 
Examining Fig. 5.3 again, we notice that the peak or maximum stress that the rod can 
resist is the ultimate tensile stress, which remains constant over a range of strain.  This 
peak resistance is also called the strength of the material.  The strength is relative to the 
type of load applied so we are referring here to the tensile strength.  For many steels, the 
difference between the yield and ultimate stresses is of the order to 25 to 30 percent, so 
for calculation purposes it is common to take the value of the ultimate stress as being the 
same as the yield stress.  So we generally consider the yield stress as the tensile strength 
of the steel though we know that this is conservative. 
 
Prior to around the 1950s, the allowable stress was determined by dividing the tensile 
strength by a constant value called the factor of safety, which is in the range of 1.7 to 2.0 
depending on the type of metal.  The factor of safety is meant to cater to unforeseen but 
dangerous situations such as poor manufacturing of the steel.  Over the years however, it 
was felt that this was too uneconomical since using a value so far from the strength 
means that more material will be used to get the job done than is necessary.  Therefore 
nowadays, the tensile strength (i.e. yield stress) is used directly in calculations.  To cater 
for manufacturing errors, the statistics of the strength of the manufactured rods is used to 
provide a value which in effect functions like a factor safety but is around 1.15, which is 
significantly smaller than the 1.7 to 2.0, resulting in more economical usage of the 
material. 
 

 
e. Direct Stress in Statically Determinate Systems 

 
Recall from Chapter 2 that for a statically determinate system, to determine the unknown 
forces only the equilibrium equations are required.   
 
In this section we examine situations regarding the calculation of stresses in ties/struts 
which require consideration of the equations of equilibrium only. 
 
 

1. Stress in a Rod Considering Self-Weight 
 
Consider a rod of weight w per unit volume and length L, under a load P as shown.  The 
aim is to determine the stress at any section, σx 
. 
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Fig. 5.4 
 
Take a section y-y as shown.  We get 2 pieces in equilibrium under the stresses shown to 
the right. 
 
The equilibrium equation is developed from the fact that the sum of the axial forces must 
equal zero, which when we divide by A, means that the sum of the stresses must be zero.  
Taking the top piece and a sign convention of downwards is positive, we therefore get: 
 
P/A + wx - σx = 0 
 
σx = P/A + wx         (5.7) 
 
Equation 5.5 indicates that the stress in the member increases with x and becomes a 
maximum when x=L at the bottom of the rod. 
 
 

2. Profile of a Constant Stress Member 
 
In the problem above, the stress depends on the location of the section.  Since the stress 
depends on the cross-sectional area A, it is possible to determine how A must change 
along the length of the member (i.e. the profile of the member) for the member to have 
the same stress at any section.  Clearly, as x increases we expect A to also increase to 
balance the increase in the stress due to the increased self-weight.  The aim is to 
determine the profile.  Since equation 5.7 indicates that the stress increases linearly we 
may think that the area must also increase linearly, but this will be incorrect as we now 
show. 

x 

P P 

y y

wx

P + wL 

σx L
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If we consider a section below y-y in Fig. 5.4, the force on that section would increase 
relative to the force at y-y because of the increased weight of material between the 
sections.  If A is the area of the section at y-y, and A+dA the area of the section below y-
y we therefore get: 
 
 
 
 
 
 

Fig. 5.5  Relationship between successive sections 
 
σx, at A+dA  x (A + dA) = σx, at A    x A + (w. A . dx)    (5.8) 
 
where dx is the length of the member between the 2 sections.  However, we desire that 
the stress at both sections be the same so σx, at A+dA = σx, at A   
 
From equation 5.8, 
 
σx dA = wA dx 
 
dA/A = (w/ σx) dx         (5.9) 
 
Integrating both sides of equation (5.9), 
 

∫∫ =
x

x

A

A

dxwAdA
0

2

1

)/(/ σ   

where A2 and A1 are the area at the lower section, and the area at the top of the member 
respectiely.  This results in, 
 
ln(A2/A1) = (w/ σx) x 
 
Hence A2 = A1 e(w/σ)x 

 

The area at the top, A1 = P/ σx , so 
 
A2 = (P/ σx) e(w/σ)x

         (5.10) 
 
Equation 5.10 indicates that the profile must decrease exponentially with increasing 
height if the stress at all sections of a member under a compressive load is to remain the 
same, and considering the self-weight of the member. 
 
 
 

dx 

Section of area A 

Section of area A + dA
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 Fig. 5.6  Profile of a Constant Stress Member with Self-Weight Considered 
 
 
Also, the required area at the base of the member is given by substituting L for x in 
equation (5.10).  
 

3. Thin-Walled Cylinder Under Pressure 
 
Another example of a statically determinate stress system relevant to civil engineering is 
the case of pipes under an internal pressure exerted by the fluid in the pipe.  This is 
typical of water supply conduits, gas supply lines, etc.  The aim is to determine the 
stresses given the pressure and properties of the pipe material.  Consider the following 
free body diagram of the stresses. 

 
Fig. 5.7 

t σy 

σy 

σx 

σx 

(a) Stresses in small element 

p

p 

σx 

(d) Circumferential equilibrium 

θ

1
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σy 
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(c) Longtitudinal equilibrium 

r

Pressure = p 

(b) Dimensions
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Longtitudinal Equilibrium: 
 
For equilibrium in the longtitudinal direction, the axial force due to the pressure must 
equal the force in the material.  Since the pressure, p, is the same in all directions, and the 
longtitudinal stress, σx acts on the pipe thickness as shown in Fig. 5.7(b), 
 
π r2 p = 2 π r t σx 
 
Hence, 
 
σx = (pr/2t)          (5.11) 
 
Circumferential Equilibrium: 
 
To determine the relationship between the pressure and the circumferential stress (also 
called the hoop stress), consider a piece of the pipe formed by cutting longitudinally a 
length of unity, and cutting transversely through the diameter as shown in Fig. 5.5 (d).   
 
At the cut diameter section, the vertical force in the pipe section must balance the sum of 
the vertical components of the pressure over the half-cylinder.   
 
Vertical force in pipe section = 2 σy t       (5.12) 
 
Since the pressure acts radially across the cross section, the vertical component of the 
force exerted by the pressure over a small angle of the circumference is p r dθ sin θ.   
 
Hence for θ from 0 to π, total vertical component of the force exerted by the pressure =  
 

∫ p r sin θ dθ = 2pr          (5.13) 
 
Equating (5.13) and (5.12), 
 
σy = p r /t          (5.14) 
 
Comparing with the longtitudinal stress, it is seen that the hoop stress is more critical 
since it is twice the longtitudinal stress. 
 
Pipe lengths need to be joined since the required length is typically more than the 
manufactured length.  Furthermore, many pipes are made by bending a rectangle and 
welding along the length.  Such a joint can be torn apart by the hoop stress.  To cater for 
this a joint efficiency factor is sometimes used in calculations as a way of reducing the 
allowable stress. 
 
Allowable stress with a joint present = joint efficiency factor x usual allowable stress 
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A joint efficiency factor can also be used for end joints (i.e. joining the circumferences of 
2 pipes) and in this case it is the longtitudinal stress in the pipe, σx, that is of concern. 
 
 
 
   f. Direct Stress in Statically Indeterminate Systems: 
 
The former problems of this chapter are statically determinate since to determine the 
unknown stresses only the equilibrium equations are required.  In the present section this 
is not the case.  To solve for the stresses require, in addition to the equilibrium equations, 
that we obtain the additional equations by examining the deformation of the members, 
and making use of the constitutive relation of equation (5.4) to convert deformation to 
stress. 
 
 
1.     Stress in a Composite (Compound) Bar: 
 
A tie or strut can be made in such a way that the cross-section is composed of different  
materials.  Such a member is called a composite or compound member.  The member can 
be fabricated by either placing the materials concentrically within each other, or 
symmetrically side-by-side; in both cases the materials need not be bonded together.  The 
important thing is that at the ends of the member there is a rigid connection so each part 
comprising a different material, moves longtitudinally by the same amount as the other 
parts. 
 

 
 

Fig. 5.8 Examples of Composite Cross-Sections 
 
 
 
The aim is to determine the stress in each part for a given load or circumstance.  As there 
is only one equilibrium equation, but several materials hence unknown stresses, clearly 
the problem is statically indeterminate. 
 

Material A 

Material B 

Material C 

Material C 
Material A 

Material B 
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     1.1   Without Temperature Effects 
 
 
Consider a composite rod of 2 materials as shown below. 
 

 
 
Equilibrium: 
 
P1 + P2 = P          (5.15) 
 
Consistency of deformation:  Extensions must be equal  
 
u1 = u2           (5.16) 
 
From equation (5.4), equation 5.16 becomes 
 
P1/(A1E1) = P2/(A2E2)         (5.17) 
 
From this we get the important fact that, 
 
σ2 = σ1 (E2/E1)          (5.18) 
 
From eq 5.17, 
 
P1 = P2 A1E1/(A2E2)  but from eq 5.15, P2 = P - P1 hence, 

P1 = (P - P1) A1E1/(A2E2) 

Simplifying we get, 

P1 = PA1E1/( A1E1 + A2E2)        (5.19) 

Likewise, 

P2 = PA2E2/( A1E1 + A2E2)        (5.20) 

IF #36  In a composite bar of 2 materials resisting an external axial load P, the   
internal load on material 1:  P1 = PA1E1/( A1E1 + A2E2), and σ2 = σ1 (E2/E1). 

 
 
 

2

1
P 
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     1.2   With Temperature Effects  
 
Consider the case where there is no externally applied force P but that the assembly is 
exposed to a temperature rise T, and rigidly restrained at the ends. 
 
A rod will extend in response to a temperature rise, T, by an amount αTL, where L is the 
original length of the rod, and α is the coefficient of thermal expansion (of unit °C-1). 
 
A composite rod not carrying an external load and comprised of materials with different 
α will experience internal stresses if there is a temperature change.  If it is a temperature 
rise the material with the higher α will pull on the one with the lower α with a tensile 
force P, and the one with the lower α, will push on the one with the higher α with a 
compressive force P, and both will experience the same final extension.  Note also that 
though the net force on any cross-section is zero, as each material is of different area and 
modulus, the sum of the stresses will not be zero. 
 
If α1 > α2: 
 
Total extension of 1 = α1 TL - PL/A1E1 
 
Total extension of 2 = α2 TL + PL/A2E2 
 
Due to the end restraints, these extensions hence strains are equal.  Therefore, 
 
α1 TL - PL/A1E1 = α2 TL + PL/A2E2 
 
Hence, 
 
P = A1 A2 E1 E2 (α1 - α2) T /( A1E1 + A2E2)      (5.21) 
 
Hence the stress in material 1 (compressive) = P/A1 and in material 2 (tensile) = P/A2 
 

IF #37  In a composite bar of 2 materials exposed to a temperature rise T and no 
externally applied load, the internal load on material 1 and 2 are equal but 
opposite and given by:  P = A1 A2 E1 E2 (α1 - α2) T /( A1E1 + A2E2).  For α1 > α2    
the stress in material 1 (compressive) = P/A1 and in material 2 (tensile) = 
P/A2. 
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6.0 STRESS, STRAIN IN HOMOGENEOUS BEAM CROSS-SECTIONS  
       (ENGINEER’S BEAM THEORY) 
 
In Chapters 2 and 4 it was explained that bending moments and shear forces develop at 
any section of a beam in order for the beam to be in equilibrium with the forces at its 
ends, and the applied forces acting on the length of the beam.  These are also referred to 
as the applied moment and applied shear force at a section since they are in 
equilibrium with the applied loads and end forces and are a function of these only.   
 
The applied moment and shear force at a section are resisted, via equilibrium, by the 
materials of the beam at the section and therefore depend on the properties of those 
materials and the way they are assembled.  If the beam is composed of only one material 
it is said to be homogeneous.  If a material is such that there are an infinite number of 
planes of symmetry through any point, the material is said to be isotropic. 
 
 
b. Shear Force V, and Bending Moment M, as Stress Resultants: 
 
The shear force V and bending moment M at a section are respectively the sum of the 
vertical components of all stresses at the section, and the sum of the product of all 
horizontal components and their distances from a horizontal plane at the section.  Hence 
V and M are resultants of the stresses.  Consider the following.  As shown, there is a 
stress at each point in the vertical section such that each is in an arbitrary direction. 
 

 
Fig. 6.1 Typical Stresses at a Cross-Section 

 
 
 

Isometric view of the typical  
stresses at a section 

Lengthwise view of the typical 
stresses at a section 

b 

d 
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As the stress resultants are summations, they are therefore defined by the following 
integrals. 
 
 

Vx =    ∫σy dA          (6.1) 
 
 
 

Mx =     ∫σx ydA         (6.2) 
 
 
 
b.     The Constitutive Relation of Beams in Pure Bending: 
 
The aim of this section is to use equation (6.2) to express the internal bending moment at 
the section, Mx in terms of the properties of the section. 
 
Consider the case of pure bending.  That is, where over a length of the beam, the 
bending moment is constant.  From equation (1) of Chapter 4, this means that over that 
length the shear force is zero.  Study of the case of pure bending enables us to isolate the 
stresses that are developed due to bending deformation only. 
 
Consider the following assumptions: 
 

1. Transverse sections of the beam which are plane before bending remain plane 
after bending. 

2. Transverse sections will be perpendicular to circular arcs having a common center 
of curvature. 

3. The radius of curvature of the beam during bending is large compared with the 
transverse dimensions. 

4. Longtitudinal elements of the beam are subjected only to simple tension or 
compression and there is no lateral stress. 

5. The beam is homogeneous and the material isotropic and of Young’s modulus the 
same value in tension and compression. 

 
These assumptions are known to be incorrect with respect to the actual behaviour of the 
beam.  However, relative to the practical concerns of engineers the errors are sufficiently 
small as to render the resulting equations nevertheless useful.  Hence the theory is called 
the Engineer’s Beam Theory.  Probably the most significant assumption is the first in 
which case, the theory is only applicable for beams with a span-to-depth ratio higher than 
about 25. 
 

A 

A 
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Fig. 6.2 Deformation of a Beam Element Under Pure Bending 
 
 
The upper part of the diagram in Fig. 6.1 is a portion of the beam before the moment M is 
applied.  The lower part of the diagram is the bending deformation when M is applied.  
The beam is of arbitrary cross-sectional shape. 
 
The lower surface stretches and is therefore in tension, and the upper surface shortens and 
is therefore in compression.  This implies the existence of a plane where there is zero 
longtitudinal deformation.  This is called the neutral plane and an axis lying in the neutral 
plane is the neutral axis.   
 
A longtitudinal fiber EF at a distance y below the neutral axis initially has the same 
length as the fiber GH at the neutral axis.  During bending EF stretches to become E’F’ 
but GH being at the neutral axis is unstrained when it becomes G’H’.  If R is the radius of 
curvature of G’H’, 

CompressionR 

y 
F’E’ 

H’
G’

B’A’

C’ D’

y 
FE 

HG 

B

δx

A 

C D

M M

O 

δθ

Tension 



Mechanics of Solids - CVNG 1000, UWI (2007/08), by r clarke 
 

85

 
G’H’ = GH = δx = R δθ 
E’F’ = (R + y) δθ 
 
Hence the longtitudinal strain in fiber E’F’,  εs = (E’F’ – EF)/ EF 
 
But EF = GH = G’H’ = R δθ 
 
Therefore, [(R + y) δθ - R δθ]/ R δθ 
 
Hence εs = y/R         (6.3) 
 
Now assuming a Hookean relationship between stress and strain, 
 
εs = σx/E  
 
hence from equation 6.3, εs = y/R = σx/E 
 
or  σx/y = E/R         (6.4) 
 
Substituting for σx from equation (6.4), into equation (6.2) 
 

Mx =     ∫ σx ydA =  (E/R) ∫ σx y2 dA 
 
 
But from Chapter 1,   
 

∫ y2 dA = Ix = second moment of area, hence 
 
Mx = E Ix/R or  
 
Mx / Ix = E / R         (6.5) 
 
But considering equation 6.4, 
 
Mx / Ix = σx/y = E / R        (6.6) 
 
Equation 6.6 is the constitutive relation for a homogeneous beam in pure bending. 
 
Also, since there is no external axial force in pure bending the internal force resultant 
must be zero. 
 

Fx =   ∫ σx dA = 0 

A A 
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But from equation 6.4, 
 

(E/R)  ∫ y dA = 0 
 

As E/R is not zero, ∫ y dA = 0 but this is the first moment of area, hence the neutral axis 
must coincide with the centroid of the section. 
 
IF #38  The constitutive relation of a beam is given by M/I = σ/y = E/R. 
 
 
IF #39  The neutral axis of a beam coincides with the centroid axis of the beam’s  
             section. 
 
 
c.   Bending Strain and Bending Stress: 
 
The following are a few points implied by the constitutive relation for a beam that should 
be explicitly noted. 
 
 

 
 

Fig. 6.3 Strain Distribution and Possible Stress Distributions 
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Fig. 6.3 shows a strain distribution for a beam, and possible stress distributions depending 
on the material and how it is arranged.  Fig. 6.3 (A) is a possible stress distribution if the 
beam is in the elastic range and composed of a homogeneous material (e.g. steel, timber).  
Fig. 6.3 (B) is a possible stress distribution for reinforced concrete at failure (i.e. a 
composite beam in the plastic range), and Fig 6.3 (C) is for a composite beam in the 
elastic range with unsymmetrical arrangement of the layers.   
 
-   The strain distribution is always linear (for the Engineer’s Beam Theory) regardless of  
     the beam’s material or its cross-section or if the material is in the elastic or plastic  
     range of stress.   
 
-   From the strain distribution one can always calculate the stress at any depth of the  
    cross-section. 
 
-   For homogeneous beams, or composite beams with a symmetrical arrangement of the 
    layers, the neutral axis (NA) is the same as the centroidal axis (CA) of the section.   
    However, for a composite beam with unsymmetrical arrangement of the layers (e.g. 
    Fig 6.3 (B) and (C)) the NA does not coincide with the CA. 
 
-  For horizontal equilibrium C (the total compressive force) and T (the total tensile 
    force) must be equal and opposite.  This can be used to determine the position of the   
    neutral axis for non-homogeneous (i.e. composite) beams. 
 
-  The most common uses of the constitutive relation for beams are:  

 
(1) calculation of the (elastic) bending stress at any location along the depth of the 
      beam for a given applied moment M:- 
 
σ = My/I but be know from Chapter 1 that S = I/ymax, where S is the section modulus. 
 
Hence the maximum bending stress is given by, σmax = M/S (for linear elastic 
homogeneous materials such as steel and timber) 
 

IF #40  For a given bending moment M, the maximum bending stress in the section 
             is given by σmax = M/S where S is the section modulus. 

 
(2) derivation of the slope and deflection equations for a beam (see Chapter 9) 
(3) the calculation of the maximum moment that a beam can be subjected to (next  
     section). 
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d.   The Moment of Resistance of Beams 
 
In the same way that one can check the safety of a rod by comparing the applied stress to 
the allowable stress, one can calculate the maximum moment that a section can withstand 
and compare this with the applied moment. 
 
The maximum moment that a beam section can withstand is called the moment of 
resistance or moment strength or moment capacity. 
 
Examining Fig. 6.3, notice that T and C form a couple with the lever arm being the 
distance between them.  Hence the moment strength Mn equals this couple and is given 
by: 
 
Mn = C (or T) x a , which applies to homogeneous and non-homogeneous sections. 
 
For a homogeneous beam of rectangular section and allowable bending stress σall 
C = T = σall bd/4 
a = d – 2d/(2x3) = 2d/3 
Hence, 
 
Mn = (σall bd/4) x 2d/3 = σall bd2/6 = σall S     (6.7) 
 
 
IF #41  The moment strength of a homogeneous beam is given by Mn = σall S 
             where σall is the allowable bending stress, and S is the section modulus. 
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7.0    STRESS IN COMPOSITE BEAM CROSS-SECTIONS 
 
In Chapter 6 the bending stress at a section of a homogeneous beam was presented as 
well as the means of determining the moment of resistance of a beam given an allowable 
stress.  This has been seen to be quite straightforward and is partly because for such 
beams the neutral axis coincides with the centroidal axis of the section.   
 
However, recall from Chapter 6 section c, that for a composite beam with unsymmetrical 
arrangement of the layers the neutral axis does not coincide with the centroidal axis.  This 
gives rise to additional concerns with respect to the determination of the stress 
distribution at the section, and with the determination of the moment of resistance of a 
composite beam section.  We address these concerns in this chapter for the case where 
the materials are in the elastic range.   
 
We also consider the case of a section of 2 materials only, though cases of more that 2 
materials can be easily determined given the development of the equations for the 2-
material case. 
 
a. Composite Beams with Symmetrical Arrangement of the Layers 
 
 
 
 
 
 
 
 
 

Fig. 7.1 A Symmetrical Composite Beam 
 
For equilibrium, the applied moment M equals the sum of the internal moment 
contributed by material A, and that contributed by material B.  Hence, 
 
M = MA + MB        (7.1) 
 
But from the constitutive relation for a beam that M/I = σ/y = E/R, this implies that 
 
M = EAIA/R + EBIB/R  
     = (EAIA + EBIB)/R       (7.2) 
 
Recall equation 6.3, which applies to a beam of any configuration (i.e. homogeneous or 
composite).  This means that for each fiber of the cross-section the deformation is along a 
circular arc hence the ratio of strain in the fiber to its distance from the neutral axis is 
constant for all fibers.  Therefore, 
 
1/R = εA/yA = εB/yB       (7.3) 

Material A

Material B
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As the materials obey Hook’s law, 
 
σA = EA εA        (7.4) 
σB = EB εB        (7.5) 
 
Substituting (7.4), (7.5) into (7.3) then (7.2) we get, 
 
(σA/ EA yA) = (σB/ EB yB) = M / (EAIA + EBIB) 
 
Rearranging we get, 
 
σA = M EA yA/(EAIA + EBIB)        (7.6) 
 
σB = M EB yB/(EAIA + EBIB)        (7.7) 
 
Therefore from equations 7.6 and 7.7, one can determine the stress distribution in the 
composite beam by substituting the values for y at the boundaries of each material.   
 
Note that the sign convention is: positive downward from the centroid of the section; so 
tensile bending stresses are of positive sign, and compressive bending stresses are of 
negative sign. 
 
 

b. Composite Beams with Unsymmetrical Arrangement of the Layers 
 
 
 
 
 
 
 
 
 
 

Fig. 7.2 An Unsymmetrical Composite Beam 
 
 
In the case of the unsymmetrical composite beam, since the neutral axis does not coincide 
with the centroidal axis, but the stresses depend on the y’s which are measured from the 
neutral axis, this means that we must first determine the location of the neutral axis 
before using equations 7.6 and 7.7.  This is a tedious procedure. 
 
The alternative approach is to transform the section into an equivalent section in which 
the cross-section is composed entirely of one of the materials.  Then the neutral axis will 
coincide with the centroidal axis of the transformed section. 

Material A

Material B
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The Transformed Section 
 
Recall the parallel axis theorem of Chapter 1, and IF #6.   Then for any part of a section, 
 
Ix’ =  Ix + c2A 
 
where Ix’ is the contribution of the part to the I of the whole section, and c is the distance 
from the centroid of the part to the centroid of the section.  For a rectangular section, 
 
Ix’ =  bd3/12 + c2 bd 
 
Multiplying by m, 
 
m Ix’ = m (bd3/12 + c2 bd) 
 
 m Ix’ =  mbd3/12 + c2 mbd 
 
If  we make the substitution b’ = mb we get 
 
m Ix’ =   b’d3/12 + c2 b’d       (7.8) 
 
The right-hand side of equation 7.8 is the I for a different or transformed section where 
the transformation is done by replacing the width of the rectangle, with a new width b’ 
obtained by multiplying the original width b by m. 
 
Stresses at the Interface 
 
Consider the interface of the materials A and B in Fig. 7.2.  The strain in each material at 
the interface must be the same.  Hence, 
 
ε = σA / EA = σB / EB.  Rearranging, we get 
 
σA = σB (EA /  EB)         (7.9) 
 
If EA > EB the ratio EA/ EB is called the modular ratio.  Hence, 
 
σA = m σB          (7.10) 
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Moment at the Section 
 
By definition, the moment at a composite section is independent of the arrangement of 
the layers, hence recalling equation 7.2 
 
M = (EAIA + EBIB)/R 
 
As EA/R = σA/y and EB/R = σB/y 
 
M = (σAIA + σBIB) / y  
 
From equation 7.10 and substituting for σA we get, 
 
M = σB (mIA + IB)/y        (7.11) 
 
Alternatively, if we substitute for σB we get, 
 
M = σA (IA + IB / m  )/y       (7.12) 
 
Considering equation 7.11, this is the same as saying that the moment M is obtained 
relative to an equivalent section composed entirely of material B, and of an I given by 
(mIA + IB). 
 
However, given equation 7.8, the mIA of 7.11 means that in the equivalent section, the 
width of the zone originally of material A, now has a width mb where b is the width of 
material A in the original composite section. 
 
Alternatively, if equation 7.12 is being used (i.e. equivalent section entirely of material 
A), then in the equivalent section, the width of the zone originally of material B, now has 
a width b/m where b is the width of material B in the original composite section. 
 
Procedure for Calculating the Stresses 
 
Given the aforesaid, the following is the procedure for calculating the bending stresses, 
hence obtaining the bending stress distribution, for an unsymmetrical composite beam 
section: 
 
Step 1.  Transform the original section, which has 2 materials, to give an equivalent  
             section of one of the materials only.  If we call the material with the higher E  
             value as material A, then the equivalent section is entirely of material B and the  
             width of the zone originally occupied by material A is multiplied by m to get the  
             new width of that zone in the transformed section.   
 
Step 2.  Given the transformed section from step 1, as it is entirely of one material, the  
             neutral axis now coincides with the centroid of the section.  Calculate the  
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             position of the centroid and the Ix of the section. 
 
Step 3.  Given the centroid of the transformed section determine the y value at the top,  
             bottom and interfaces.  Knowing Ix from step 2, calculate the stresses at these  
             locations from σB = MIx /y 
 
Step 4.  Step 3 gives the stress distribution of the transformed section which is entirely of  
             material B.  To get the stress distribution for the original composite the stress in  
             material A is now required.  This is obtained by using σA = m σB.  Note that at  
             any interface between material A and B, there will be a stress value for each, so  
             the distribution at an interface in the composite section will have these 2 values. 
 
This procedure of using the equivalent section to determine the stresses, can also be used 
for symmetrical sections. 
 
 
c.   The Moment of Resistance of Composite Beams  
 
 
Recall IF #41 from Chapter 6 that to determine the moment of resistance of a 
homogeneous beam section you substitute the allowable stress into the constitutive 
relation, so Mres = σall x I/ymax. 
 
In the case of a composite beam section however, we have (at least) 2 materials each with 
its own allowable or permissible stress. 
 
In the last section we express the stresses in the composite beam section in terms of either 
one of the materials.  Therefore, the issue with the calculation of the moment of 
resistance for a composite beam section is that if we use the allowable stress for one of 
the materials, we do not immediately know if the stress in the other material would then 
be higher than its allowable value.  This means that for composite beam sections, we 
must do the calculations twice - one for each material, and the correct answer is the safe 
one.  The safe answer is the one for which the stress in each material is less than or equal 
to its allowable stress. 
 
For symmetrical sections, we can directly calculate the moment of resistance based on 
each material so the correct or safe answer is the lower answer.  For unsymmetrical 
sections, we determine the equivalent section for each material and calculate the stresses 
in the both materials.  The safe stress distribution is the one for which the stress in each 
material is less than or equal to its allowable stress.  We then calculate the moment of 
resistance by using the safe stress distribution and substituting in σall x I/ymax for the safe 
equivalent section. 
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Symmetrical Sections 
 
Equations 7.6 and 7.7 can be re-written in terms of the moment of resistance and 
allowable stress as, 
 
Mres = (σA, allowable / yA, max) (IA + IB/m)      (7.13) 
 
Mres = (σB, allowable / yB, max) (mIA + IB)      (7.14) 
 
where m is the modular ratio EA/EB. 
 
In equation 7.13, yA, max is the y value for the extremity of material A that is furthest 
away from the centroid of the composite section.  Note that this value need not be the 
maximum y value for the section as a whole, but only for material A.   
 
Note also that if the section is such that the layers are horizontal, it is most convenient to 
use the parallel axis theorem to calculate the I’s remembering not to forget the b2A term. 
 
Upon substitution in equations 7.13 and 7.14, the moment of resistance of the 
symmetrical section is the lower value. 
 
 
Unsymmetrical Sections 
 
Since we typically use the transformed section is this case, and the transformed section is 
of one material, the calculation of the moment of resistance for unsymmetrical sections is 
the same as for homogeneous sections, after we determine the safe stress distribution. 
 
Step 1.  Transform the section into one with material A only and knowing the allowable  
              stress for material A, determine the stress distribution of this section. 
Step 2.  In the stress distribution of step 1, at the level where there is an interface between  
             materials A and B, calculate the stress at that level for material B using  
             σB = σA/m. 
Step 3.  Repeat steps 1 and 2 but this time for material B, and using σA = mσB. 
Step 4.  Knowing the stresses in both materials for each case (i.e. case when material A is 
             at its allowable stress from step 1, and the case when material B is at its  
             allowable stress from step 2), determine the safe stress distribution. 
Step 5.  Knowing the safe stress distribution, calculate Mres by substitution in  
             Mres = σall x I/ymax. 
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IF #42  Regardless of whether composite beam section is symmetrical or not,  
             M = σB (mIA + IB)/y = σA (IA + IB / m  )/y, m = EA/EB > 1 
  
IF #43  If EA > EB, to create a transformed section entirely of material B, multiply  
             the width b of the zone occupied by material A, by m to give a new width 
             mb.  To create a transformed section entirely of material A, multiply the  
             width b of the zone occupied by material B, by 1/m to give a new width b/m.   
             The new section can now be treated as a homogeneous beam section. 
 
IF #44  At the interface of 2 materials in a composite beam σA = mσB, if EA > EB. 
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8.0   COMBINED AXIAL AND BENDING STRESS 
 
Consider a section in the linear elastic range.  An axial load applied to the section at the 
centric of the section will result in the same stress (P/A) at any point in the section, 
whether that stress is tensile or compressive. 
 
 
 
 
 
 
 
 

 
 

Fig. 8.1 An Axial Load at the Centroid 
 
A bending moment applied about the centroidal axis of the same section (assuming a 
homogeneous section) will result in bending tensile and compressive stresses in 
accordance with the theory of bending of beams (My/I). 
 
 
 
 
 
 
 
 
 

Fig. 8.2 A Bending Moment about the Centroidal Axis 
 
If both the axial load and the bending moment are applied simultaneously, the resulting 
stress at any point can be determined using the principle of superposition.  Hence the 
resulting stress is simply the sum of the axial stress, and the bending stress at that point. 
 
Note however that when axial and bending stresses are combined, the stress on one side 
is increased whereas on the other side the stress is decreased.  This is because the bending 
moment induces both tensile and compressive stresses whereas the axial load induces 
either tensile or compressive stresses.   
 
In the above, the bending moment M, is applied independent of the applied load P and the 
two of them together create the combined stress state.  However, a bending moment is 
created when the axial load P is applied at a point other than the centroid.  The difference 
between the actual position of P and the centroidal location is called the eccentricity, e.  
This is shown in the figure below for the one-dimensional case.  Hence a moment is 
induced by the eccentric axial load, with the value of the moment as Pe. 

Same stress at any point: P/A

Bending stress at any point: My/ICentroidal axis
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Fig. 8.3 Moment as Equivalent to Eccentric Axial Load 
 
In a situation of combined loads we are concerned with 2 main questions – (a) what is the 
net or resultant combined stress at any point, and (b) when is the net or resultant 
combined stress either totally compressive or totally tensile.  We consider these in the 
subsequent sections. 
 
 
 

a. Sections with Uniaxial Bending  
 
 
In the above description of combined stresses, we used a rectangular section to illustrate 
the point, but the section can be of any shape.  There is also only one moment about any 
of the centroidal axes, so the type of bending indicated is called uniaxial bending. 
 
Hence, to be consistent with the sign convention for bending stresses as presented in 
Chapter 6, if we consider a compressive stress as negative, the resultant combined stress 
at any point is given by, 
 
 
σ   =  - P/A + My/I        (8.1) 
 
 
In equation 8.1, if the point under consideration is to the right of the centroid (i.e. neutral 
axis) then y will be negative, and vice versa.  Graphically, equation 8.1 means: 

e

PP 

M 
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Fig. 8.4 Possible Net Combined Axial and Bending Stresses 
 
The diagrams of Fig. 8.4 can be considered the same as Figs. 8.1 and 8.2 but viewed in 
the plane of the applied moment, M.  Note that there are 3 possibilities with respect to the 
net combined stress – (A), (B), and (C).  These show how the stresses change as the ratio 
M/P increases.  In (A), and (B), the stress is compressive at any point but decreases on 
going from right to left.  Eventually, if M/P is large enough, a zone of tensile stresses 
develop as shown in (C).  This situation is on concern in the design of pad footings in 
which case it is desirable to have only compressive stresses.  Now since M = Pe this is 
the same as saying that as the eccentricity e increases, a point is reached where tensile 
stresses can occur.   
 
Let us determine this point for the case of a rectangular section. 
 
 
 
 
 
 
 
 
 

P 

M
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Compressive 
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A = bd  and I = bd3/12 
 
At the point in question, the net compressive stress equals zero and y = d/2, hence 
substitute in equation 8.1 and noting that M = Pe, we get, 
 
0 = -P/(bd) + 6Pe/(bd2) 
 
Hence, 
 
P/(bd) = 6Pe/(bd2).  Dividing on both sides by P/(bd) we get 
 
1 = 6e/d or, 
 
e = d/6 
 
This tells us that if the ratio of M/P or e, for the sense of the moment shown, is greater 
than d/6 then tensile stresses will develop, otherwise the section will have net 
compressive stresses only.  Since the moment can be of opposite sense, this means that in 
a zone of 2x(d/6) centered at the centroid of the section, if P is placed within that zone the 
section will never develop a net tensile stress at any point.  This zone is therefore called 
the middle third. 
 
It is also noteworthy that for the uniaxial bending case, all points on the section distance 
y from the centroid have the same net combined stress (as shown in Fig. 8.2). 
 
 

  b. Sections with Biaxial Bending 
 
 
The equations of the last section were developed for the case of uniaxial bending in 
which case there is only one moment applied to the section and it is about a centroidal 
axis.  In many practical situations however, there is bending simultaneously about both 
centroidal axes.  This type of bending is called biaxial bending. 
 
The case of combined axial and biaxial bending stresses follows by extension of the 
uniaxial case.  For the biaxial bending we consider the bending about the centroidal z-z 
axis as Mz, and about the x-x axis as Mx.  We will also have an eccentricity ex of P 
relative to the z-z axis, and an eccentricity ez of P relative to the x-x axis. 
 
Consider a coordinate system as follows established for a plane section of arbitrary shape.  
This gives the positive directions for all quantities. 
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Fig. 8.5 An Arbitrary Plane Shape Under Biaxial Bending 
 
 
Hence as for equation 8.1, by the principle of superposition we get the following equation 
for the stress at any point (y,z) on a plane due to combined axial and biaxial bending 
stresses as, 
 
σ   =  - P/A + Mz y /Izz + Mx z /Ixx          (8.2) 
 
This can also be written as, 
 
σ   =  - P/A + P ex y /Izz + P ez z /Ixx         (8.3)  
 
Using equations 8.2 and 8.3 it can be shown that for a rectangular section, the zone 
beyond which a net tensile stress will develop in some corner of the section is of a 
rhombus shape with extremities ±d/6 and ±b/6 from the centroid.  This zone is called the 
kern. 
 
Lastly, it is noteworthy that for the case of combined axial and biaxial bending stresses 
the stresses at each corner of the section will be different. 
 
IF #45  For the case of uniaxial bending, the resultant combined axial and bending  
             stress at any point is given by, σ   =  - P/A + My/I.    
   
IF #46  For the case of biaxial bending, the resultant combined axial and bending  
             stress at any point is given by, σ   =  - P/A + Mz y /Izz + Mx z /Ixx . 
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