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9.0   DEFLECTION, SLOPE OF BEAM CROSS-SECTIONS 
  
 
The aim of this section is the calculation of the deflection and slope at any section of a 
beam.  The ability to perform these calculations is important for the following reasons: 
 
1.  In our Mechanics of Solids course we have limited our attention to beams that are 
statically determinate.  However, practical construction demands the use of redundant 
structures.  As we saw in Chapter 2, to solve for the unknown forces in redundant 
structures, additional equations are required and these are provided by considering the 
way the that the ends of the beams deform at the joint.  This is in terms of the deflection 
and slope.  This then enables the development of the two principal approaches to solving 
for redundant structures and in one of these, called the flexibility method, the focus is on 
using information about the deflections and slopes to set up the main equations to be 
solved.  The other method is called the stiffness method.  These methods are the basis of 
most of what we learn later in the UWI Civil and Environmental Engineering programme 
when we study Structural Mechanics and Structural Analysis.  
 
2.  The performance of a structure is considered satisfactory not only when the structure 
safely resists the loads applied to it.  Another important consideration is the confidence of 
the user of that structure that all is well with the structure.  If it deforms too much, that 
confidence is lost, even if the engineer knows that the structure is safe.  Hence a key 
aspect in the design of a structure is that its deformations, hence deflections, are within 
acceptable limits.  This is called an aspect of the serviceability of the structure. 
 
3.  The proper performance of structures to earthquakes requires that attention be focused 
on the displacements of the members of structure during the earthquake, rather than the 
forces in those members. 
 
 

a. The Moment-Curvature Relationship 
 
 
From the Engineer’s Beam Theory of Chapter 6 we know: 
 
Mx/I = E/R    
 
Hence 
  
Mx = EI x (1/R)        (9.1) 
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Consider an infinitesimal length of the deflected beam: 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9.1 Deflection of an Infinitesimal Length of a Beam 
 
 
The length ds is the infinitesimal length of the fiber at the neutral axis. 
 
ds = R dθ  
 
Hence 
 
1/R = dθ/ds.     
 
But for small deflections, θ ≈ dy/dx and ds ≈ dx, therefore 
 
1/R = d2y/dx2.     Hence, equation (9.1) becomes 
 
Mx = EI ( d2y/dx2 )         (9.2) 
 
y is the deflection of the beam at point x; dy/dy (=θ) is the slope of the beam at point x, 
and d2y/dx2 is the curvature of the beam at point x. 
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b. Double Integration Method 
 
Given equation (9.2), the slope and deflection at point x are therefore obtained by 
integration of the Mx /EI expression for the moment at point x. 
 
d2y/dx2

  = Mx /EI 
 

Slope, θ = dy/dx = ∫ (Mx /EI) dx + P       (9.3) 
 

Deflection, y = ∫∫ (Mx /EI) dx + Px + Q      (9.4) 
 
To use equations 9.3 and 9.4 for solution, an expression for Mx is derived for the given 
problem, and substituted in equation 9.3.  This is then integrated once and the boundary 
conditions of the problem are used to determine the integration constant P.  This 
completes the calculation of the slope at x. 
 
The deflection at x is then obtained by integrating the slope equation and using the 
boundary conditions of the problem to determine the integration constant Q.   
 
The double-integration method can be used to determine the deflection at a point for any 
problem.  However, recall from Chapter 4 Example 1, that to solve that problem we 
needed an expression for Mx from A to P, and another expression for Mx from P to B. 
Hence in using the Double-Integration Method for deflections calculations can be very 
tedious as the integrations must be performed for each Mx expression of each region 
between the applied loads, if the loading is discontinuous.   
 
In such cases it is much easier to modify the way the loading is represented before 
performing the integration.  This is the basis of the Macaulay Method of section d.   
 
In the practical solution of deflection problems it is also much more convenient to use the 
deflection solutions for standard simple load conditions, and employ the Principle of 
Superposition. 
 
The Double-Integration Method is therefore only efficiently used for such simple cases 
because the solutions for sets of P and Q are then not required. 
 
IF #47  Though the double integration can be used to solve for deflections and slopes  
             for all beams, it is not the most efficient method except for simple cases. 
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c. Standard Cases 

 
In the previous section it was stated that the solution of the deflection problem for simple 
load conditions can be used along with the Principle of Superposition to solve more 
complex problems. 
 
We now employ the Double-Integration Method to solve some of these simpler problems.  
These solutions are called standard cases, and it is expected that the student will commit 
to memory these standard cases, and the others presented in the table. 
 
Case 1: Point Load Distance “a” From Left End: 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Sign Convention:  Upward deflection is +ve; sagging moment is +ve 
 
TMA A,    Wa = RB x L        RB = Wa/L 
RA + RB = W                         
RA = W-RB = W-Wa/L = W(1-a/L) = W(L-a)/L 
 
Take a section between AB distance x from A such that x < a: 
 

W 

L 

a 

x 

A B
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Step 1: From above FBD, at x determine the moment equation: 
 
MX = Wx(L-a)/L  
 
Step 2: Substitute in the deflection equation and integrate twice: 
EI (d2y/dx2) = MX = Wx(L-a)/L 
EI (dy/dx) = Wx2(L-a)/2L + P     (1) 
EI y = Wx3(L-a)/6L + Px + Q      (2) 
 
Step 3: Apply boundary conditions: 
 
At x = 0, y = 0 ⇒ Q = 0 
 
The integration constant P depends on the location “a” of the point load. 
 
Max deflection for point load at center: 
 
For a point load at the center a = L/2, and for the maximum deflection x = L/2 
At x = a = L/2 dy/dx = 0.  Substitute in (1)  
⇒ EI (dy/dx) = Wa2(L-a)/2L + P = 0 ⇒ P = -Wa2/4 
Substitute in (2), 
⇒ EI y = Wa3(L-a)/6L – Wa3/4 = WL3/96 – WL3/32 = -WL3/48 
 
Slope at support for point load at center: 
 
x = 0 and a = L/2.  Substitute in (1), 
⇒EI (dy/dx) = Wx2(L-a)/2L – Wa2/4 = -WL2/16 
 
 
 

x
RA 

MX
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Case 2: UDL Load Starting Distance “a” From Left End: 
 
 
 
 
 
 
 
 
 
 
 
Sign Convention: Upward deflection is +ve; sagging moment is +ve 
 
TMA B,      RA  L = w(L-a)(L-a)/2 
   RA     = w(L-a)2/2L 
 
 
Take a section between CB distance x from A: 
 
 
 
 
 
 
 
 
 
 
Step 1: From above FBD, at x determine the moment equation: 
 
MX + w(x-a)2/2 = wx(L-a)2/2L  
MX = wx(L-a)2/2L - w(x-a)2/2 
 
Step 2: Substitute in the deflection equation and integrate twice: 
 
EI (d2y/dx2) = MX = wx(L-a)2/2L - w(x-a)2/2 
EI (dy/dx) = wx2(L-a)2/4L – (wx3/6 – wx2a/2 + wa2x/2) + P      (1) 
EI y = wx3(L-a)2/12L – wx4/24 + wx3a/6 - wa2x2/4 +  Px + Q     (2) 
 
Step 3: Apply boundary conditions: 
 
At x = 0, y = 0 ⇒ Q = 0 
At x = L, y = 0  
⇒ P = - wL2(L-a)2/12L + wL3/24 – wL2a/6 + wa2L/4 

x 
RA 

MX a 
w

w per m 
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x 
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        = - wL3/24 – wa2L/12 + wa2L/4       (3) 
 
 
Maximum deflection for UDL over whole beam: 
 
For udl over the whole beam, 
a = 0 
Hence by substitution in (3), 
⇒ P = - wL3/24 
 
By inspection the maximum deflection occurs at x = L/2.  Substitute in (2) with a = 0, 
⇒ EI y = w(L/2)3L2/12L – w(L/2)4/24 - wL3(L/2)/24 
             = wL4(1/96 – 1/384 – 1/48) 
             = -5wL4/384 
 
Slope at support for UDL over whole beam: 
 
At the support x = 0.  Substitute in (1) with a = 0, 
⇒EI (dy/dx) = P = -wL3/24 
 
 
Note that in the following table, W is “big w” which is of force units, and not “little w” 
which is of force per length units.  (i.e.W=wL); each beam is of length L, and the signs of 
the slope and deflection are ignored. 
 
TYPE OF BEAM           MAX.              MAX.     SLOPE        DEFLECTION        
AND LOADING        SLOPE      DEFLECTION         FACTOR         FACTOR 
 
    1/2              1/3     WL2/(EI)           WL3/(EI)   
 
 
    1/6             1/8   “  “ 
 
 
 
 
    1/16            1/48   “  “ 
 
 
    1/24          5/384   “  “ 
 
 
 
 

Table 9.1  Slope and Deflection Formulae for Standard Cases 
 

L/2 
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As an example on the use of Table 9.1, the slope at the end of a simply supported beam 
with a point load at the center is given by WL2/(16EI), and the maximum deflection in a 
cantilever with a point load at the end is given by WL3/(3EI). 
 
 

d. Macaulay Method 
 
In section b above it was mentioned that for many practical problems, in which case the 
loading is discontinuous, the Double-Integration Method usually is too tedious since a 
separate expression is required for Mx for each region between the loads.  This means that 
we have to solve for the integration constants P and Q several times.  This inconvenience 
was resolved by W. H Macaulay in 1919. 
 
IF #48  The Macaulay Method is the most efficient way to calculate the slopes and  
             deflections in a beam.  It is also called the singularity or step function  
             method. 
 
The Macaulay Method enables the double integration, hence determination of P and Q, to 
be performed only once, even if the loading is discontinuous.  The Macaulay Method 
achieves this by redefining the way the load is represented.  This is done by 
mathematically transforming a load from its original discontinuous form as a function of 
x, to a continuous form as a function of x via the use of the singularity function.   
 
The following are singularity function representations relevant to point loads and udl’s. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 9.2  Commonly Used Singularity Functions 

 
The singularity function has the form, 
 
fn(x) = [x-a]n          (9.5) 
 
It is important to note that the term on the right-hand side of equation (9.5) is a notation 
used to represent the functions shown graphically in Fig. 9.2.  This is emphasized by the 

a 

[x-a]1 

x 
a 

 

[x-a]2

x 

(a) (b) 
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use of the square brackets [ ] in which case the variables are not to be treated 
algebraically.  When the function is evaluated, then round brackets (  ) are used and you 
can then treat the variables algebraically. 
 
In equation 9.5, when n ≥ 0, the function evaluates to zero for x < a but evaluates to  
(x – a)n  for x  > a.  Its integral is, 
 

∫   [x-a]n dx = [x-a]n+1/ (n+1)        (9.6) 
 
 
IF #49  The formula for integrating a singularity function when n ≥ 0 is  
 

       ∫   [x-a]n dx = [x-a]n+1/ (n+1)  
 
 
When forming the expression for Mx in a problem with a point load W, for any section in 
the region to the right of the point load the point load will contribute a moment of W[x-a] 
if a is the distance from the left end, to the point load.  In this case, one can use the 
singularity function represented in Fig. 9.2 (a).  Likewise, the one can use the singularity 
function represented in Fig. 9.2 (b) for a udl which starts “a” from the left end.  This is 
because, the udl will contribute a moment of w[x-a]2/2. 
 
Therefore by the use of singularity functions loads that are discontinuous can be 
represented by continuous functions.  This enables a procedure to be derived to perform 
the double-integration once and obtain the deflection.  The procedure is as follows: 
 
Rules for Using Macaulay’s method:- 
 

1. Select an origin at one end – usually left end. 
 
2. Set the problem in proper form if needed – any udl in the space between last load 

from left, and the rightmost support must be made continuous to the right end, 
which means introducing a negative udl (i.e. load upwards) to cancel it. 

 
       
        

becomes 
 
 
 

  
3. Take a section in the region of the beam closest to the right support and determine 

the moment equation just as in the double integration method.  However, for each 
applied load express its contribution to Mx in terms of the singularity function. 
  

x 

0 

x 

0 
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i.e. For point load distance “a” from left end: w ⇒ w[x-a]  
 For a udl starting distance “a” from left end: w ⇒ w/2[x-a]2 

 
4. Continue just as in the usual double integration method but 
  

a. When integrating a singularity function use equation 9.6: 
 

Eg.  ∫ [x-a] dx = ½ [x-a]2  and  ∫ [x-a]2 dx = 1/3 [x-a]3 
 

b. When evaluating the step function replace the [ ]  
 with ( ). 
 
c. Ignore values for (x-a) in any region where x < a 

 
IF #50  When the moment equation is obtained in terms of a singularity function  
             and the equation is being evaluated, ignore values for (x-a) where x < a.   
 
Example 9.1:- 
 
Use Macaulay’s Method to redo Case 1 in section c above, to find the deflection under 
the point load of a simply-supported beam, if the point load is located at mid-span. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
By taking moments, we know that 
 
RA = W(L-a)/L 
RB = Wa/L 
 
 
Using Macaulay’s Method, we must take a section in the region of the beam closest to the 
right support (Rule 3). 
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Moment equilibrium equation: 
 
 
Mx - RA x + W[x-a] = 0 
Mx = RA x - W[x-a] 
 
EI d2y/dx2 = Mx = RA x - W[x-a] 
 
Integrating to get slope equation, 
 
EI dy/dx = RA x2/2 - W[x-a]2/2 + P        
 
Integrating again to get deflection equation, 
 
EI y = RA x3/6 - W[x-a]3/6 + Px + Q       (1) 
 
Applying boundary conditions to equation (1): 
When x = 0, y = 0, but in accordance with rule c, as x < a , the term with the singularity 
function is ignored.  Hence Q = 0. 
 
At x = L, y = 0, therefore from equation (1) and knowing that Q = 0, 
 
 
0 = RA L3/6 – W(L-a)3/6 + PL 
 
Hence making P the subject of the formula, noting that RA = W(L-a)/L, 
 
P = - Wa(L-a)(2L-a)/(6L)        (2) 
 
Substituting (2) in (1) and noting that Q = 0, we get, 
 
 
 

Singularity function due to W 

Rule 4a for integrating the 
singularity function

Rule 4b: ( ) brackets as we are 
evaluating the singularity function

RA 
x

MX

W
a 
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y = -Wx (L-a)(2aL – a2 – x2)/(6EIL) – W[x-a]3/(6EI)     (3) 
 
Equation (3) is the deflection y at any point x along the beam.  Since it is based on 
Macaulay’s Method then by Rule 4c, the second term on the right-hand side of (3) is to 
be ignored if x < a. 
 
From (3), when x = a, 
 
y = -Wa2 (L-a)2/ (3EIL) 
 
If the load is at mid-span, a = L/2 hence, 
 
y = -WL3/48EI 
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10.   TORQUE OF SHAFTS WITH CLOSED-END SECTIONS 
  
Thus far in the presentation of the subject matter of Mechanics of Solids, we considered 
the axial and bending forces in one-dimensional members, followed by axial and bending 
stresses in those members.  In those cases the stresses are longitudinal relative to the axes 
of the member, whether they are axial or bending stresses. 
 
However, in practical construction shearing stresses can also be a controlling factor and it 
becomes important to have some insight into the nature of such stresses.  The study of 
torsion provides an avenue for the study of shear stress.   
 
In building construction there is the case of the external beams supporting a floor.  In this 
instance the beam experience significant torsion as the floor it is supporting is on one side 
and the ends of the beam are rigidly attached to the columns at the ends.  Steel beams of 
all types are prone to torsional movement when under vertical load with the effect of 
reducing the moment capacity if the length of the beam exceeds a certain amount. 
 
In the study of torsion the member under the torsional or twisting moment is called a 
shaft but it should be noted that any predominantly one-dimensional member can 
experience torsion. 
 
 
a. The Constitutive Relation for Shafts 
 
Consider a rod of circular section and composed of homogeneous and isotropic material.  
In the following, the torque is the force, and the twist is the associated deformation of the 
shaft. 
 
 

 
 

Fig. 10.1 Shaft Dimensions 
 

If one end is fixed and a twist θ is applied at the other end, it can be shown that: 
 

L

r 0 
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Fig. 10.2 Deformation of a Shaft 
 
- Plane sections remain plane, and 
- A radial line remains straight. 

 
Any point on the edge of the rod will rotate through an angle γ relative to its original 
location. 
 
Hence,        r 0 θ  = L γ0        (10.1) 
 
Any element on the surface of the rod will be in a state of pure shear, with shear strain γ0 
 
Hence,      γ0 = τ0 / G         (10.2) 
 
where τ0 is the shear stress and G is the shear modulus. 
 
From (1),  
 
      γ0 =   r 0 θ /L =  τ0 / G  
 
Therefore, 
 
      τ0 / r    =     G θ/L          (10.3) 
 

γ0 τ 0 

τ 0 

L

r 0 

γ0 

IN PLAN 

θ 
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The rod can be considered as a large number of thin cylinders bonded together. 

 
Fig. 10.3  Forces on an Infinitesimal Cylinder in a Shaft 

 
 
For any of the thin cylinders of thickness dr at radius r, the force on an element of length 
ds = τ ds dr 
 
Therefore the moment due to the force about the centre of the rod = τ r ds dr 
 
Hence for the whole circumference of the thin cylinder, the torque on the cylinder,  
 
dT = τ r (2πr) dr = 2π τ r2 dr 
 
Therefore for all the thin cylinders from r = 0 to r 0, the total torque T, 
 
T =    ⌠r 

0   2π τ r2 dr 
          ⌡0 
 
From (3),  τ = (G θ) r /L 
 
Hence, 
 
T = G θ ⌠r 

0   2π  r3 dr         (10.4) 
        L   ⌡0 

 
The integral in (10.4) is the polar moment of inertia, Ip 
 
Hence, T = G θ Ip /L 
 
Hence from (10.3) we get, 

r 0 

r

dr

ds
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 T /  Ip   =   G θ / L =     τ0 / r0       (10.5) 
 
Equation (10.5) is the constitutive relation for shafts. 
 
IF #51 The constitutive relation for shafts under torsion is  T / Ip  =  Gθ / L =  τ0 / r0  
 
For a circular rod of solid cross-section, 
 
Ip = π r0

4/2 
 
For a circular rod of hollow cross-section, 
 
Ip = π ( r0

4 – ri
4 ) / 2 

 
where r0 is the outer radius and ri is the inner radius. 
 
 
b. Concentric Shafts 
 
A concentric shaft is one whose section is composed of 2 or more shafts bonded together.  
Concentric shafts are typically of different materials making the section a composite 
section. 
 
 
 
 
 
 
 
 
 

Fig. 10.4  Example of a Concentric Shaft 
 

For concentric shafts under a torque T, the twist θ experienced by each material will be 
the same 
 
From equation 10.5, θ  = TL / (GIp) 
 
Hence, as the shafts are of the same length, 
 
θ  = TA / (GA Ip A ) = TB / (GB Ip B )       (10.6) 
 
If the 2 shafts are of the same material, GA = GB = G hence equation 10.6 becomes 
 

Shaft of material A and shear 
modulus, GA Shaft of material B and shear 

modulus, GB 
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TA / Ip A  =  TB / Ip B          (10.7) 
 
 
Also, for concentric shafts, the torque T is shared between the 2 shafts so, 
 
T = TA + TB          (10.8) 
 
IF #52 For concentric shafts in torsion the twist angle is the same for all materials,  
           and the total torque is the sum of the torque on each shaft. 
 
 
c. Shafts in Series 
 
If 2 shafts of different radius or material are placed in series and a torque applied to the 
assembly, the torque experienced by each shaft, hence the assembly, is the same but the 
twists in each material will be different. 
 
 
 
 
 
 
 
 
 
 
 
 
                                Fig. 10.5  Example of Shafts in Series 

 
Hence, 
 
T = TA = TB          (10.9) 
 
Therefore, it can be shown that for shafts in series each of the same material and r0, the 
strength of the assembly is determined by the strength of the shaft with the lower Ip. 
 
IF #53 For shafts in series the twist angle is different for each shaft, and the total 
            torque is the same on each shaft. 
 
 
 
 
 
 
 

L

r
Shaft A 

Shaft B 

T 
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d. Efficiency of Shafts 
 
The issue here is that we have 2 shafts – one hollow and one solid.  If for the same cross-
sectional area of the same material, and experiencing the same maximum shear stress, 
will the hollow shaft be able to carry a higher torque than the solid shaft, or vice versa? 
 
Since the 2 shafts experience the same shear stress, then from equation 10.5  
 

TH r0 / IpH = TS r / IpS         (10.10) 
 
TH / TS = ( r / r0 ) ( IpH / IpS )        (10.11) 
 
But, Ip = π r4/2 for the solid shaft, 
 
Ip = π ( r0

4 – ri
4 ) / 2 , for the hollow shaft 

 
 Hence, IpH / IpS = ( r0

4 – ri
4)/ r4 

 
So 10.11 becomes, 
 
TH / TS = ( r0

2 + ri
2) / ( r0  r )        (10.12) 

 
Let  r0 / ri = k 
 
Hence 10.12 becomes 
 
TH / TS = ( k2 + 1 ) / [ k √ ( k2 - 1 ) ]       (10.13) 
 
As k is always > 1, the hollow shaft will always be able to carry a higher torque than the 
solid shaft (for all properties other than radii being the same). 
 
IF #54 The ratio of the torsion capacities of a hollow vs a solid shaft is given by 
            TH / TS = ( k2 + 1 ) / [ k √ ( k2 - 1 ) ] where k = r0 / ri. 
 
 
 
e. The Power-Torque Relationship 
 
The power-torque relationship is given by, 
 
T = 60 P/ ( 2 π N )         (10.14) 
 
where,  
 
T is in units of Nm 
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P is the power in Watts (i.e. Nm / second) 
N is the number of revolutions per minute 
 
Also, 
 
P = T ω          (10.15) 
 
where,  
 
ω is the angular velocity in units of radian / second 
 
 
And, the work done per revolution in Joules = T θ 
 
Work done per second =  60 T/ ( 2 π N ) = T2 / P     (10.16) 
 
IF #55 The power-torque relationship is given by T = 60 P/ ( 2 π N ); T is in Nm, P in  
            watts, and N in revs per minute. 
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11.0 STRESS, STRAIN IN 3D “BULK MASS” SOLIDS 
 
 
In Chapter 1, we defined the term “solids” as the set of 3D objects termed “frameworks” 
and “bulk masses”.  From Chapters 2 to 10 the focus has been on 1D components of 
frameworks - ties/struts and beams, mostly as part of statically determinate systems.  In 
this section we conclude the presentation of Mechanics of Solids with the consideration 
of “bulk masses”, in terms of the stresses and strains within a bulk mass.  In the literature 
a bulk mass is called a continuum. 
 
In a continuum, we consider the more general case that at any point more than one direct 
stress or strain, and more than one shear stress or strain are acting simultaneously.  This 
is called a multi-axial stress state. 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.1 A Gussett Plate Under Several Loads 
 
Examine the connection in a truss shown in Fig. 11.1 above.  In the practical construction 
of a truss, it is common for a joint to be built using a steel plate to which the members are 
bolted or welded.  This plate is called a gusset plate.  Clearly at any point in the gusset 
plate there will be stresses in the vertical direction and in the horizontal as well acting 
simultaneously.  There may also be shear stresses.  The critical question is - what are the 
maximum stresses in the plate?  One may think that this can be determined by resolving 
the forces in each direction, dividing by the relevant area of the plate, and using the 
formula for a resultant (i.e. square-root-sum-of-squares).  But this will not give the 
correct answer and the reason one may think that it would give the correct answer is 
because the stress is being thought of as a vector which is not so. 
 
We learned that a force is a vector in that it is defined by both a magnitude and a 
direction.  In our previous consideration of stress and strain we treated them as if they 
were vectors, but this was for convenience only since at that time our concern was with 
1D components.   
 
Recall that the direct stress is also called the “normal” stress.  This hints to a very 
important fact about stress and strain in general (i.e. as it is conceived within a 
continuum).  This fact is that stress or strain is not really like a vector or force, in which 
case there is the magnitude and direction of the force.  Stress and strain are rather defined 

Steel gusset plate Maximum stresses at this 
point required  
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by a magnitude and 2 directions – the direction of the stress and the direction of the plane 
on which the stress acts.  This is why the direct stress is termed the “normal” stress – it 
acts on a plane which is normal, or at right angles, to the direction of the stress.   
 
This has great implications for the way engineers need to interpret how stress and strain 
work in the continuum - (1) when we speak of stress or strain at a point in the solid, this 
must mean the stresses or strains at all planes that pass through that point, called the state 
of stress or strain at that point.  And (2), the state of stress or strain is relative to a 
coordinate system from which all planes are defined, and this enables the stress or strain 
on any one plane to be determined if we know the stress or strain on any other plane. 
 
Returning to the gusset plate problem, we shall learn in the following sections that at any 
point in the plate, in the horizontal and vertical directions all stresses will be 
simultaneously present, but that there will be a plane at angle θ to the horizontal where 
the maximum normal stresses are located.  These stresses are called the principal 
stresses and on the plane at which they act, there will be no shear stresses.  There will 
also be another plane where the shear stresses will be a maximum, but the principal 
stresses will not be zero.  Furthermore, every point on the plate can have different 
principal stresses and maximum shear stresses acting on planes at different directions (the 
same situation exists for the strains as well). 
 
If the truss physically existed and we wanted to determine the principal stresses at any 
point on the gusset plate and their directions, the following procedure can be used:- 
 

1. Measure the principal strains and the planes on which they act by installing a 
particular type of strain gauge called a rosette, at the point of interest. 

2. Given the principal strains, use the constitutive relations for a continuum to 
calculate the principal stresses at the point.    

3. If required, one can then use the transformation equations to determine the 
stresses or strains on any plane relative to the plane of the principal stresses or 
strains, in order to get the state of stress or strain at the point.  These 
transformation equations can be solved either by matrix algebra, or graphically by 
the Mohr’s Circle Method. 

 
In the following sections, these items and the theories behind them are presented. 
 
IF #56 Stress and strain are not vector quantities.  They are completely defined  
            when the direction of the plane on which the force acts is considered, in  
            addition to the magnitude and direction of the force.  
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a. 3D Strain and Plane (2D) Strain 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.2 Distortion of a Line Element PA 
 

Consider the displacement of a particle such as P in Fig. 11.2. Its displacement can be 
resolved into components u1, u2, u3 parallel to the coordinate axes x1-x2-x3.  Next 
consider a line element PA of length ∆x1 originally lying parallel to the x1 axis.  The 
displacement in the x1 direction of the point A, accurate to the first order of a series 
expansion in ∆x1 is, 
 
u1 + (∂u1/∂x1) ∆x1        (11.1) 
 
Notice the partial differential since the displacement of P’A’ is in all 3 dimensions.   
 
The increase in length of the element PA due to deformation is thus, 
 
(∂u1/∂x1) ∆x1         (11.2) 
 
As the strain is the change in length over the original length, then the strain at point P’ in 
the x1 direction is given by, 
 
ε11 = ∂u1/∂x1         (11.3) 
 
 

u1 + ∆ u1
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Similar equations can be derived for line elements originally lying parallel to the x2 and 
x3 axes, so we get 
 
ε22 = ∂u2/∂x2         (11.4) 
 
ε33 = ∂u3/∂x3         (11.5) 
 
These are called the normal strains. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.3 Distortion of Line Elements PA, PB 
 

 
With respect to shearing strain, consider the distortion of the original 90 degree angle 
between the line elements PA and PB, as shown in Fig. 11.3. 
 
The displacement of the point A in the x2 direction is, 
 
u2+ (∂u2/∂x1)           (11.6) 
 
The displacement of the point B in the x1 direction is, 
 
u1+ (∂u1/∂x2)           (11.7) 
 
The deformed line element P’A’ is inclined to the initial direction of PA by a small 
degree α equal to ∂u2/∂x1.  Likewise, the angle between P’B’ and PB is β and is equal to 
∂u1/∂x2. 
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As the shearing strain is defined as the change in initial right angle on deformation, the 
shearing strain ε12 between the planes x1-x3 and x2-x3 is α + β, with x3 perpendicular to 
the paper .  Hence, 
 
ε12 =  ∂u1/∂x2 + ∂u2/∂x1        (11.8) 
 
Similarly for the planes x1-x2 and x1-x3, and x2-x1 and x2-x3, we get 
 
ε13 =  ∂u3/∂x1 + ∂u1/∂x3        (11.9) 
 
ε23 =  ∂u3/∂x1 + ∂u1/∂x3        (11.10) 
 
Equations 11.3 to 11.5, and 11.8 to 11.10, are the strain-displacement equations that 
relate the 6 independent components of strain, to the 3 components of displacement, 
given a rectangular Cartesian coordinate system. 
 
In many problems of interest in civil engineering, suitable analysis results can be 
obtained if it is assumed that any strain with a component in the x3 direction is zero.   An 
example of this is a retaining wall in which case the x3 direction is set in the direction of 
the length of the wall.   
 
 Such a state of deformation is called plane strain.  Hence for the state of plane strain, 
 
ε33 = ε13 = ε23 = 0 and  
 
ε11, ε22 and ε12 ≠ 0. 
 
 
 
b. 2D Strain Transformation 
 
In the introduction to this chapter, it was stated that if a plate is subjected to forces in 
different directions simultaneously, the region of greatest interest to the civil engineer 
need not be in the direction of any of the forces.  Rather this region, defined as some 
plane through a point in the material, will generally be at an angle θ relative to any 
direction chosen as the reference direction.  It is therefore very important to be able to 
determine quantities (i.e. strains or stresses) as a function of the angle of orientation θ, of 
any plane at a point. 
 
The deformation of a line element within the solid must be consistent regardless of the 
plane from which the deformation is being observed.  Due to this geometric consistency, 
if we know the deformation relative to one coordinate system, it is possible to know the 
deformation relative to any other coordinate system at an angle θ relative to the first.  The 
determination of one state from another is termed a transformation.  Hence we are 
concerned in this section, with the equations of strain transformation. 
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Let us consider the state of deformation in a plane.  Note that this is not the same as the 
state of plane strain, but enables the derivation of the strain transformation equations for a 
plane. 
 
Also, let us simplify the symbols for the strains by using the contracted notation for 
engineering strain.  Additionally, we will use the conventional symbol of γ for shear 
strain.  Hence, ε11 becomes εx, ε22 becomes εy, and ε12 becomes γxy. 
 
Strain Normal to A Plane Oriented θ From an x-y Coordinate System 
 
Given strains εx, εy, γxy in an x-y coordinate system, what is the strain normal to a plane 
oriented θ from the x-y coordinate system? 
 
The normal strain is given by, 
 
εn = (εx + εy)/2 + [(εx – εy) cos 2θ] /2 + (γxy/2) sin 2θ    (11.11) 
 
This is derived as follows. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.4  Strain on a Plane ABCD  
 

The strain normal to the plane FB is (A’C’ – AC)/AC. 
 
If δx is the increase in length from AD to A’D’ and δy from CD to C’D’ then 
 
A’D’ = AD + δx = AD(1 + δx/AD) = AD (1 + εx) 
C’D’ = CD + δY = CD(1 + δy/CD) = CD (1 + εy) 
 
Likewise, 
 
A’C’ = AC (1 + εn) 
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Now 
 
(A’C’)2 = (A’D’)2 + (C’D’)2 – 2A’D’ . C’D’ cos (90 + γxy) 
 
(AC)2(1 + εn)2 = (AD)2 (1+ εx)2 + (CD)2(1+ εy)2 + 2AD(1+ εx) CD (1+ εy)sin γxy (11.12) 
 
Neglecting higher order terms, and as sin γxy ≈ γxy, 
 
(AC)2(1 + 2εn) = (AD)2 (1+ 2εx) + (CD)2(1+ 2εy) + 2AD . CD γxy   (11.13) 
 
But (AC)2 = (AD)2 + (CD)2 hence, 
 
(AC)2 (2εn) = (AD)2 ( 2εx) + (CD)2(2εy) + 2AD . CD γxy    (11.14) 
 
Dividing by 2(AC)2, 
 
εn = εx cos2 θ  + εy sin2 θ  + γxy sin θ cos θ        (11.15) 
 
 
εn = (εx + εy)/2 + [(εx – εy) cos 2θ] /2 + (γxy/2) sin 2θ     (11.16) 
 
 
Shear Strain on A Plane Oriented θ From an x-y Coordinate System 
 
Given strains εx, εy, γxy in an x-y coordinate system, what is the shear strain on a plane 
oriented θ from the x-y coordinate system? 
 
The shear strain is given by, 
 
γs /2 = [(εx - εy) sin 2θ] /2 - (γxy/2) cos 2θ      (11.17) 
 
This is derived as follows. 
 
From Fig. 11.4 and as for the case of normal strain, 
 
A’B’ = AB (1 + εy) 
 
A’E’ = AE (1 + εn) 
 
E’B’ = EB (1 + εn+90) 
 
Where εn+90 is the direct strain in a direction at 90 degrees to εn. 
 
Now, 
 
(A’B’)2 = (A’E’)2 + (E’B’)2 – 2A’E’ . E’B’ cos (90 – γs) 
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(AB)2(1 + εy)2 = (AE)2 (1+ εn)2 + (EB)2(1+ εn+90)2 - 2AE(1+ εn) EB (1+ εn+90) cos (90- γs) 
 
But cos (90- γs)  = sin γs ≈ γs and ignoring higher order terms, 
 
(AB)2(1 + 2εy) = (AE)2 (1+ 2εn) + (EB)2(1+ 2εn+90) + 2AE . EB γs  
 
But (AB)2 = (AE)2 + (EB)2 and dividing by 2(AB)2 we get, 
 
εy = εn sin2 θ  + εn+90 cos2 θ  - γs sin θ cos θ        (11.18) 
 
½ γs sin 2θ = ½ (εn+90  + εn) + ½ (εn+90  - εn) cos 2θ - εy    (11.19) 
 
Now, 
 
εn+90  = (εx + εy)/2 + [(εx – εy) cos 2(θ+90)] /2 + (γxy/2) sin 2(θ+90) 
 
         = (εx + εy)/2 - [(εx – εy) cos 2θ] /2 - (γxy/2) sin 2θ 
  
Also, from (11.16), we get 
 
½ (εn+90 + εn) = ½ (εx + εy)        (11.20) 
 
½ (εn+90 - εn) = - ½ (εx + εy) cos 2θ - (γxy/2) sin 2θ     (11.21) 
 
Substituting 11.20 and 11.21 in 11.19 and simplifying, 
 
γs /2 = [(εx - εy) sin 2θ] /2 - (γxy/2) cos 2θ      (11.22) 
 
 
 

1. Matrix Method of Calculation 
 
In Fig. 11.4 the line BF is the same as the y-axis, y’, of another coordinate system x’-y’ 
oriented at θ relative to the x-y coordinate system.  Therefore, εn of equations 11.11 to 
11.22 is equivalent to εx’ in the x’-y’ system.  We can therefore rewrite equation 11.15 as, 
 
εx’ = εx cos2 θ  + εy sin2 θ  + γxy sin θ cos θ        (11.23) 
 
Since the x’-axis is at 90 degrees to the y’-axis, we can determine εy’ as, 
 
εy’ = εx sin2 θ  + εy cos2 θ  - γxy sin θ cos θ        (11.24) 
 
For the shear strain, γs is equivalent to γx’y’ in the x’-y’ system, and in equation 11.18, 
εn+90 is the same as εy’.   
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Lastly, to be consistent with the same equations for the stress transformations, presented 
in section e, we replace the shear strain with a shear strain exactly twice its value (i.e. γxy 
is replaced by 2γxy) and use this in equations 11.23, 11.24, and 11.18.   
 
Then, on substituting the revised 11.23 and 11.24 in the revised 11.18 and simplifying we 
get, 
 
γx’y’ = - εx sin θ cos θ + εy sin θ cos θ  + γxy ( cos2 θ  - sin2 θ )   (11.25) 
 
Equations 11.23 to 11.25 can be represented in matrix format as, 
 
[ε’ ] = [ T ] [ε ]         (11.26) 
 
where, 
                     

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θ−θθθθθ
θθθθ
θθθθ

=
 sin coscossincossin-

cos2sin- cos sin
cos2sin sin cos

22

22

22

T   

 
Hence to determine the strains ε’ on any plane oriented θ anticlockwise from another 
plane with known strains ε, simply substitute in equation 11.26.  The matrix 
multiplication can be easily done on a programmable calculator.  Note however that the 
correct value for the shear strain γx’y’ is twice the calculated value. 
 
 

2. Mohr’s Circle Graphical Method of Calculation 
 
The Mohr’s Circle Method for strains has the same objective as the Matrix Method of the 
last section – the calculation of the strains on a plane knowing the strains on another 
plane.  In this case, the solution is determined graphically. 
 
Equations 11.16 and 11.22 can be rewritten as, 
 
εn - (εx + εy)/2 = [(εx – εy) cos 2θ] /2 + (γxy/2) sin 2θ     (11.27)  
 
γs /2 = [(εx - εy) sin 2θ] /2 - (γxy/2) cos 2θ      (11.28) 
 
Squaring equations 11.27 and 11.28 and adding them together we get, 
 
[εn - (εx + εy)/2]2 + (γs/2)2  = [(εx – εy)/2]2 + (γxy/2)2       (11.29) 
 
Equation 11.29 is the equation of a circle with radius ½ √[( εx - εy )2 + γxy

2] and with the 
center of the circle at [(εx + εy)/2,0].  When the circle is drawn, each point on the circle 
represents the strain values at a plane oriented 2 θ from a reference plane. 
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The flowing diagram is the Mohr’s Circle of Strain. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.5 Mohr’s Circle of Strain 
 

The procedure for drawing a Mohr’s circle of strain is as follows:- 
 
Step 1.  Draw the center point A at [(εx + εy)/2,0]. 
Step 2.  Draw points D and B at [εx, - γxy /2] and [εy, γxy /2] respectively.  The sign 
             convention for the shear strain is that if the element deforms as  
              
             the shear strain is positive; but if like    the shear strain is negative. 
              
Step 3.  Draw a circle of diameter DB about the center. 
Step 4.  For any point on the circle (e.g. point C), the horizontal coordinate is the εx

’  
            (i.e. εn ) and the vertical coordinate is the γx’y’/2 (i.e. γs/2). 
 
The following 2 points must be noted:- 
 

1. The final shear strain value is to be calculated by doubling the value obtained 
from the Mohr’s Circle. 

2. εy
’
  is 180 degrees away from point εx

’ (i.e. 180 deg away from C). 
 
 

A

C

PQ 

2φ 

2θ 

(εx + εy)/2 
½ √[( εx - εy )2 + γxy

2] 

εx, - γxy /2 

εy, γxy /2 
B

D

εn , γs /2 

γ /2 

ε ε1 ε2 



Mechanics of Solids - CVNG 1000, UWI (2007/08), by r clarke 
 

130

IF #57 The Mohr’s Strain Circle is simply a way of determining the strains on a  
            plane if  you know the strains on another plane. 
 
IF #58 When using the matrix method of transforming strains, the correct shear  
            strain is twice the calculated value. 
 
 

3. Principal Strains and Maximum Shear Strain 
 
 
Of the infinite number of planes through a point there are certain planes where the normal 
strains are at the maximum value.  These values are called the principal strains and are 
indicated by ε1 and ε2 (i.e. points P and Q) in Fig. 11.5.  The principal strains act on 
planes oriented 2φ degrees anticlockwise and 2φ + 180 degrees anticlockwise from the 
planes on which εx and εy act, respectively (on the Mohr circle).  ε1 is always the 
numerically larger value.  That is ε1 > ε2, so for principal strains of –3500 and –4000, ε1 
is the –3500.  On the planes of the principal strains, the shear strain is zero. 
 
The principal strains are given by, 
 
ε1 = (εx + εy)/2 + ½ √[( εx - εy )2 + γxy

2]      (11.30) 
 
ε2 = (εx + εy)/2 - ½ √[( εx - εy )2 + γxy

2]      (11.31) 
 
Hence, ε1 acts on a plane θ anticlockwise from the x-axis where, 
 
θ = ½ tan-1 [γxy/ (εx - εy )]        (11.32) 
 
Likewise, ε2 acts on a plane θ anticlockwise from the x-axis where, 
 
θ = 90 + ½ tan-1 [γxy/ (εx - εy )]       (11.32) 
 
The maximum shear strain is given by, 
 
γs,max =   √[( εx - εy )2 + γxy

2]        (11.33) 
 
Hence, 
 
γs,max =   ε1 – ε2          (11.34) 
 
 
Also, if equations 11.30 and 11.31 are added together we get, 
 
ε1 + ε2 = εx + εy         (11.35) 
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Equation 11.35 is called a strain invariance relationship since it means that the left-
hand-side is always the same value regardless of the coordinate system, hence plane, in 
which εx and εy act. 
 
IF #59  ε1 is always numerically  > ε2 and the strain invariance relationship is  
             ε1 + ε2 = εx + εy. 
 
c. Strain Gauge Rosettes 
 
It was stated in the introduction of this chapter that the principal strains are measured 
using a device called a strain gauge rosette.  The rosette is attached to the point where 
one wishes to measure the principal strains. 
 
A strain gauge rosette is actually a set of strain gauges oriented relative to each other at 
the same point.  A strain gauge is a wire and its principle of operation is that when the 
material strains, the resistance of the wire changes in proportion to the strain. 
 
However, a strain gauge can only measure strain in a direction parallel to its length so 3 
gauges must work together - the rosette, to determine the principal strains.  Typical 
arrangements are such that a constant angle of 45º, 60º, or 120º is maintained between the 
gauges. 
 
Hence for a 45º rosette, the principal strains are given by, 
 
ε1 = (εL + εN)/2 + √2/2 √ [( εL – εM )2 + ( εM – εN )2]     (11.36) 
 
ε2 = (εL + εN)/2 - √2/2 √ [( εL – εM )2 + ( εM – εN )2]     (11.37) 
 
where εL , εM and εN are the strains measured at θ,  θ + 45º, and θ + 90º, respectively, 
from the plane of the principal strain, ε1.  Also, 
 
tan 2θ = (2εM - εL - εN) / (εL - εN)       (11.38) 
 
When the principal strains and the orientations of their planes relative to the x-axis are 
determined using equations 11.36 to 11.38, it may still be necessary to determine εx and 
εy.  This can be done in 2 ways: 
 
1.   By using the matrix transformation equation 11.26 and substituting a value of – θ  
            calculated from equation 11.38. 
 
2. By using a Mohr’s Circle in terms of the principal strains, as follows. 
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The center of the circle has the coordinates [1/2 (ε1 + ε2),0] , and the circle has a radius of 
1/2 (ε1 - ε2).  The circle is drawn in the usual way, and the values of εn and γs, are given 
by the point on the circle whose radius is at 2θ anticlockwise from the normal strain axis. 
 

 
 

Fig. 11.6 Mohr’s Circle of Principal Strains 
 

 

A

2θ 

(ε 1 + ε 2)/2 
(ε 1 - ε 2)/2 

 εn , γs /2 

γ /2 

ε ε1 ε2 



Mechanics of Solids - CVNG 1000, UWI (2007/08), by r clarke 
 

133

 
d. Theory of 3D Stress and Plane (2D) Stress 
 
As presented in section “a” above, strain is defined by the deformation of points in the 
continuum and this deformation is measurable.  However in the case of stress, stress is 
never observed but rather inferred.  Therefore a stress is a thoroughly conceptual entity 
required to account for the observation that different materials require different degrees 
of effort to achieve the same state of deformation. 
 
We are already familiar with the concept of stress from previous chapters.  However, 
recalling the introduction to this chapter, it was stated that the proper definition of stress 
requires reference to the direction of the plane on which a stress acts, in addition to the 
direction of the stress.  Fig. 11.7 describes the theoretical stresses on an infinitesimal 
cube of material in a rectangular Cartesian coordinate system. 
 

 
 

Fig. 11.7 Stresses on an Infinitesimal Volume 
 
For any stress component σmn the m refers to the direction normal to axis xm, and the n 
refers to the direction of the stress parallel to axis xn.   
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Fig. 11.7 also indicates that in a rectangular coordinate system there are 9 components of 
stress – 3 normal stresses σ11,  σ22, σ33 and 6 shear stresses σ12, σ21, σ13, σ31, σ23, σ32.  
Rotational equilibrium requires that each pair of the shear stresses as presented, must be 
equal.  That is,  σ12 =  σ21,  σ13 =  σ31 and σ23 =  σ32.  Hence the σ21, σ31 and σ32 are termed 
the complementary shear stresses.   Therefore, the total number of independent stress 
components is 6.   
 
The directions shown in Fig. 11.7 indicate the sign convention for the normal stresses.  
Hence tensile stresses are positive and compressive stresses are negative.  With respect to 
shear stresses however, positive and negative shear stresses are as indicated in Fig. 11.8 
below.  Hence a positive shear shress causes a clockwise rotation of the element, and 
versa.  This is also consistent with the sign convention for the shear strains as presented 
previously. 
 
 

 
Fig. 11.8 Sign Convention for the Shear Stress 

 
 
e. 2D Stress Transformation 
 
 
As for the case of the strains, it is important to be able to determine the stresses on a 
plane knowing the stresses on another plane orientated θ relative to the first plane.  Hence 
in this section we are concerned with the equations of stress transformation. 
 
Within the context of civil engineering, it is typically of greater practical interest to 
consider the 2D stress state called the state of plane stress.  Note that this is not the same 
as the state of stress that corresponds to the state of plane strain previously presented. 
 
Also, let us simplify the symbols for the stresses by using the contracted notation for 
engineering stress.  Additionally, we will use the conventional symbol of τ for shear 
stress.  Hence, σ 11 becomes σ x, σ 22 becomes σ y, σ 12 becomes τ xy, σ 33 becomes σ z, etc. 
 
Hence for the state of plane stress, 
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σ z = σ xz = σ yz = 0 and  
σ x, σ y and τ xy ≠ 0. 
 
Note that in the case of plane stress non-zero strains still exist in the z-direction (i.e. the 
non-zero strains of ε z , ε xz , ε yz  exist).  The reverse is also the case for the state of plane 
strain (i.e. the non-zero stresses of σ z , σ xz , σ yz  exist). 
 
The stress transformation equations are derived by considering the equilibrium of a 
wedge obtained by cutting through an infinitesimal volume such that the inclined axis is 
actually the y’-axis oriented θ anticlockwise relative to the y-axis.  This is shown in Fig. 
11.9 below.  The notation that follows is parallel to that for the strains previously 
presented. 
 
Stress Normal to A Plane Oriented θ From an x-y Coordinate System 
 
Given stresses σx, σy, τxy in an x-y coordinate system, what is the stress normal to a plane 
oriented θ from the x-y coordinate system? 
 
The normal stress is given by, 
 
σn = ½ (σx + σy) + ½ (σx - σy)cos 2θ + τxy sin2θ     (11.39) 
 
This is derived as follows. 
 

 
 

Fig. 11.9 Stresses on an Infinitesimal Wedge 
 

Considering a unit thickness of the wedge in the direction normal to the paper, then 
resolving all forces normal to the inclined plane AB, 
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σnAB – σx BC cosθ - σy AC sinθ - τxyBC sinθ - τyxAC cosθ   = 0 
 
Dividing by AB, 
 
σn – σx (BC/AB) cosθ - σy (AC/AB) sinθ = 0.  But BC/AB = cosθ, and AC/AB = sinθ, so 
we get, 
 
σn = σxcos2θ + σysin2θ + τxy cosθsinθ + τyx sinθ cosθ     (11.40) 
 
Considering that τxy = τyx and using the trigonometrical equations, we get 
 
σn = ½ (σx + σy) + ½ (σx - σy)cos 2θ + τxy sin2θ     (11.41) 
 
Shear Stress on A Plane Oriented θ From an x-y Coordinate System 
 
Given stresses σx, σy, τxy in an x-y coordinate system, what is the shear stress on a plane 
oriented θ from the x-y coordinate system? 
 
The shear stress is given by, 
 
τs = ½ (σx - σy) sin2θ - τxy cos2θ        (11.42)  
 
This is derived as follows. 
 
Now, resolving forces parallel to AB we get, 
 
τs AB - σx BC sinθ + σy AC cosθ + τxyBC cosθ - τyxAC sinθ   = 0 
 
Dividing by AB, 
 
τs - σx cosθ sinθ + σy sinθ cosθ + τyx cos2θ - τyxsin2θ   = 0 
 
Hence, 
 
τs = σx cosθ sinθ - σy sinθ cosθ - τxy cos2θ + τyxsin2θ   
 
But τxy = τyx, hence 
 
τs = σx cosθ sinθ - σy sinθ cosθ - τxy cos2θ + τyxsin2θ      (11.43) 
 
Equation 11.43 can be rewritten as, 
 
τs = ½ (σx - σy) sin2θ - τxy cos2θ        (11.44) 
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1. Matrix Method of Calculation 
 
Recalling equation 11.40 and considering that σn is the same as σx

’ , 
 
σx

’ = σxcos2θ + σysin2θ + 2τxy cosθsinθ       (11.45) 
 
As σy

’ is at 90° to σx
’, equation 11.45 can be rearranged to get, 

 
σy

’ = σxsin2θ + σycos2θ - 2τxy cosθsinθ       (11.46) 
 
Lastly, considering the sign convention for shear stress as presented in Fig. 11.8, τxy as 
per equation 11.43 is negative.  Hence altering the signs of the terms, and noting that τs is 
the same as τx’y’ we get, 
 
τs = -σx cosθ sinθ + σy sinθ cosθ + τxy cos2θ - τyxsin2θ      (11.47) 
 
 
Equations 11.45 to 11.47 can be put in matrix format to get the same transformation 
equation previously presented for strain. 
 
[σ’ ] = [ T ] [σ ]         (11.48) 
 
where, 
                     

[ ]
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

θ−θθθθθ
θθθθ
θθθθ

=
 sin coscossincossin-

cos2sin- cos sin
cos2sin sin cos

22

22

22

T   

 
Hence to determine the stresses σ’ on any plane oriented θ anticlockwise from another 
plane with known stresses σ, simply substitute in equation 11.48.   
 
Please be reminded however that if equations 11.40 and 11.45 are being used instead of 
the matrix equation, then the correct sign for τxy is that down-to-the-left is positive.   
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2. Mohr’s Circle Graphical Method of Calculation 
 

As in the case of the strains, a Mohr’s Circle can also be developed for the stresses, as 
implied by equations 11.41 and 11.44.  Note however that it is not necessary to half the 
shear stress as is the case for the shear strain. 
 
The circle has a radius of  ½ √[( σx - σy )2 + 4τxy

 2] and with the center of the circle at [(σx 
+ σy)/2,0].  When the circle is drawn, each point on the circle represents the stress values 
at a plane oriented 2θ from a reference plane. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.10 Mohr’s Circle of Stress 
 
 
The procedure for drawing a Mohr’s circle of stress is as follows:- 
 
Step 1.  Draw the center point A at [(σx + σy)/2,0]. 
Step 2.  Draw points D and B at [σy, -τxy] and [σy, τyx] respectively.  The sign 
             convention for the shear stress is as indicated in Fig. 11.8.   
Step 3.  Draw a circle of diameter DB about the center. 
Step 4.  For any point on the circle (e.g. point C), the horizontal coordinate is the σx

’  
            (i.e. σn ) and the vertical coordinate is the τxy (i.e. τs). 
 

 

A

C

P Q 

2φ 

2θ 

(σx + σy)/2 
½ √[( σx - σy )2 + 4τxy

 2] 

σy, -τxy 

σy, τyx 
B

D

σn , τs 

τ 

ε σ1 σ2 
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IF #60  The sign convention for the shear stress τxy depends on the calculation  
             method being used.  If using equation 11.43 or 44 positive is down-to-the-left  
             or up-to-the-right.  If using the matrix equation 11.48 or the Mohr’s Circle  
             method, then positive is up-to-the-right or down-to-the-left. 

 
 
3. Principal Stresses and Maximum Shear Stress 

 
 
The principal stresses are the maximum and minimum axial stresses that exist at a point.  
At the plane where the principal stresses act, the shear stress is zero on that plane.  Hence 
from the Mohr’s stress circle, as shown in Fig. 11.10, the maximum principal stress is σ1 
located at point P, and the minimum principal stress is σ2 located at point Q.  σ1 is always 
the numerically larger value.  That is σ1 > σ2, so for principal stresses of –35 MPa and –
40 MPa, σ1 is the –35 MPa.  Therefore, 
 
σ1 = (σx + σy)/2 + ½ √[( σx - σy )2 + 4τxy

 2]      (11.49) 
 
σ2 = (σx + σy)/2 - ½ √[( σx - σy )2 + 4τxy

 2]      (11.50) 
 
Adding 11.49 and 11.50 we get the stress invariance relationship: 
 
σ1 + σ2 = σx + σy         (11.51) 
 
Also from the Mohr’s stress circle, the planes on which the σ1 and σ2 act are φ, and φ + 
90° respectively, measured anticlockwise from the x-axis. 
 
Alternatively, 
 
tan 2φ = τxy / [1/2 (σx - σy)] hence, 
 
φ = ½  tan-1 [2τxy / (σx - σy)]        (11.52) 
 
With respect to the maximum shear stress, this is represented by the top and bottom 
points of the Mohr’s stress circle.  Hence, 
 
τs,max  =   ½ √[( σx - σy )2 + 4τxy

 2] 
 
Note that when the shear stress is at a maximum, the corresponding normal stress is not 
zero but is given by, ½ (σx + σy) = ½ (σ1 + σ2) 
 
The plane on which the maximum positive shear stress acts is given by, 
 
tan 2θ = - (σx - σy)/ (2τxy)        (11.53) 
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When the principal stresses and the orientations of their planes relative to the x-axis are 
determined, it may still be necessary to determine σx and σy.  This can be done in 2 ways: 
 
1.   By using the matrix transformation equation 11.48 and substituting a value of – φ  
            calculated from equation 11.52. 
 
2. By using a Mohr’s Circle in terms of the principal strains, as follows. 
 
 
The center of the circle has the coordinates [1/2 (σ1 + σ2),0] , and the circle has a radius 
of 1/2 (σ1 - σ2).  The circle is drawn in the usual way, and the values of σn and τs, are 
given by the point on the circle whose radius is at 2θ anticlockwise from the normal 
strain axis. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.11 Mohr’s Circle of Principal Stresses 
 
 
 
 
 
 

τ 

A

2θ 

(σ1 + σ 2)/2 
(σ 1 - σ2)/2 

σn , τ s 

σ σ1 σ2 
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IF #61  σ1 is always numerically > σ2 and the stress invariance relationship is 
             σ1 + σ2 = σx + σy. 
 
 
f. The Plane Stress-Strain Constitutive Relation of a Homogeneous Isotropic 

Material 
 
 
Recall that in the introduction to this chapter a situation is discussed regarding a steel 
gusset plate under a state of multi-axial stress, leading to the question of the maximum 
stresses in the plate and their location. 
 
In the previous sections we determined how the maximum or principal strains can be 
determined using strain gauge rosettes.  The issue then is that given the principal strains 
at a point, can the principal stresses be determined at that point.  The calculation of the 
principal stresses from the principal strains is accomplished using the constitutive 
relations.  These are the equations that relate stress to strain and vice versa.  In chapter 5 
we learned the most basic constitutive relation for a uniaxial stress state as σ = Eε .  We 
now consider the constitutive relations for the multi-axial stress state.  The presentation is 
limited to the plane stress condition, and to materials classified as isotropic and 
homogeneous. 
 
When a rod of such material is pulled in tension, or pushed in compression, there is a 
longitudinal (i.e. in the direction of the force) extension hence strain.  Simultaneously 
however, the rod shrinks in a direction at right angles to the tensile force, or swells in the 
case of a compressive force.  The direction at right angles to the axial deformation is 
called the transverse or lateral direction.  It has been observed that the ratio of the 
lateral to longtitudinal strain is a constant termed the Poisson ratio, ν.   ν  is in the range 
0.28 to 0.32 for most metals.  Since the lateral deformation is a reduction in dimension 
when the longitudinal deformation is an increase, and vice versa for the case of 
longtitudinal compression,  
 
Lateral strain = - ν x longtitudinal strain. 
 
Considering this phenomenon of a lateral strain when a longtitudinal stress is applied, the 
strains corresponding to a biaxial tension (i.e. tension-tension) stress on an element of 
material is as indicated in Fig. 11.12 below. 
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Fig. 11.12 Stresses and Corresponding Deformations 
 
From Fig. 11.12 therefore, the total strain in the x-direction is, 
 
εx = σx/E - νσx/E         (11.54) 
 
In the y-direction, 
 
εy = σy/E - νσx/E         (11.55) 
 
We say in chapter 10 that the constitutive relation with respect to shear is, 
 
γxy = τxy/G          (11.56) 
 
Equations 11.54 to 11.56 are the constitutive relations for the 2D case.  In terms of 
principal strains they become, 
 
ε1 = σ1/E – νσ2/E         (11.57) 
 
ε2 = σ2/E – νσ1/E         (11.58) 
 
Rearranging so that the principal stresses are the subject we get, 
 
σ1 = E (ε1 + ν ε2)/(1 – ν2)        (11.59) 
 
σ2 = E (ε2 + ν ε1)/(1 – ν2)        (11.60) 
 
Equations 11.59 and 11.60 enable the calculation of the principal stresses knowing the 
principal strains. 
 
Lastly, it should be mentioned that by considering the fact that shear deformation can be 
attained by applying normal stresses at 45°, the relationship between the various 
deformation constants of multi-axial deformation can be determined as, 
 

νσx/E σy/E 

νσx/Eσy 

σy 

σx σx 

σy/E 

νσy/E νσy/E 

σx/E σx/E 
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E = 2G(1 + ν)          (11.61) 
 
g. Introduction to Failure Theory 
 
 
Returning to the situation presented in the introduction, we have learned in the previous 
sections how to calculate the principal stresses at any point on the gusset plate by 
measuring the strains using a rosette and using the constitutive relations.  We also learned 
how to determine the strains and stresses on all planes through the point.   
 
The interest in determining the principal stresses is ultimately so that the question can be 
answered of whether the gusset plate in question can be safely used.  The central point 
here is that if we believe this answer can be determined by simply comparing the 
principal stresses with the yield stress of the material, taking it as the limit of safety, then 
for the case of ductile metals, we will be wrong in vary many instances.  This will be 
dangerous since we will have over-estimated the strength of the plate. Experimental 
evidence shows that for ductile metals like steel failure can occur before any of the 
principal stresses reach the yield stress, depending on the ratio of σ1 to σ2. 
 
This has motivated the need for failure theory so that accurate predictions can be made 
of the level of stress that will cause failure for a multi-axial stress state.  The following 
are some of the failure theories used, considering the plane stress state.  In each case, the 
attempt is to determine, for the multi-axial stress state, the values of the principal stresses 
which are equivalent to the yield (i.e failure) stress when the material is placed under a 
simple uniaxial tension or compression test.   
 
Maximum Principal Stress Theory 
 
This theory is attributed to Rankine and states that failure occurs when the larger 
principal tensile stress, σ1, equals the failure stress of the material in a simple tension test, 
or when the larger principal compressive stress, σ2, equals the failure stress of the 
material in a simple compression test. 
 
σ1 = σy,t          (11.62) 
 
σ2 = σy,c          (11.63) 
 
This is the theory referred to at the introduction of this section. 
 
Maximum Shear Stress Theory 
 
This theory is attributed to Tresca.  It states that when failure occurs in the multi-axial 
stress state, the principal stresses correspond to the maximum shear stress when the 
material fails under simple tension.  But in simple tension the maximum shear stress in 
the material must equal half the yield stress (see Fig. 11.11 and consider σ2 = 0).  For the 
2D case this leads to, 
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σ1 = σy,t 
 
Note that this is the same as the maximum principal stress theory.  However for the 3D 
case the maximum shear stress is (σ1 – σ3)/2 which would give σ1 – σ3 = σy,t 
 
 
Maximum Shear Strain Energy Theory 
 
This theory is called the Von Mises Theory.  It states that when failure occurs in the 
multi-axial stress state, the principal stresses correspond to those required for the strain 
energy due to the shear deformation at the point, to be equivalent to the strain energy due 
to the shear deformation when the material fails under simple tension.  For the 2D case 
this results in, 
 
σ1

2 +  σ2
2 - σ1 σ2 = σy,t

2        (11.64) 
 
When these three failure theories are plotted on σ1 versus σ2 axes, the result is as shown 
in Fig. 11.13 if the tension and compression yield strengths are equal. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11.13 Failure Envelopes of Some Failure Theories 
 

A loading condition is safe if the σ1,σ2 coordinates fall within the envelope.  Notice that 
the Rankine theory gives a square, the Tresca theory gives a 6-sided polygon, and the 
Von Mises theory gives an ellipse.  However, if σ1 and σ2 are either both tensile or both 
compressive, the Tresca is the same as the Rankine.   
 

σ1

σ2 

Von Mises

Rankine 

Tresca 
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From Fig. 11.13, if σ1/σ2 = -1 (i.e. tension-compression as in the case of pure torsion) as 
loading is increased a line progresses from the origin at a 45° angle, in the second or 
fourth quadrant.  This line will reach the Tresca failure envelope first and the Von Mises 
just after that.  However, the Rankine will not be reached until considerably more stress 
is applied.  Experimental evidence indicates that the Von Mises gives the best correlation 
for ductile metals so this is why the Rankine theory is unsafe for such material (except 
when σ1/σ2 or σ2/σ1 is close to zero). 
 
The Rankine theory results in good agreement with experimental data for brittle materials 
such as cast-iron, concrete and ceramics.  The Tresca theory results in good agreement 
with experimental data for soil.   
 
 
 


