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CVNG 3001 STRUCTURAL ENGINEERING 
 

STRUCTURAL DYNAMICS 
 
 

1. Fundamental Characteristics of Vibration 
 
Vibration is a time-varying response to a change in motion of a structure in such a 
manner that inertia forces are imposed which resist the change.  Only when inertia forces 
arise and affect the system, is the phenomenon considered a phenomenon of dynamics. 
 
In the presence of inertia forces, the system is governed by Newton’s Second Law such 
that it is in a state of dynamic equilibrium (d’Alembert’s Principle).  If the system is 
disturbed and the disturbance removed, the system tries to return to its former state and 
vibrates on its own until it does so.  This “vibration on its own” is called free vibration.  
Vibration due to an external time-varying disturbance is called forced vibration.  During 
free vibration, the structure moves from side to side and the time taken to move from one 
position, back to that original position, is called the natural period.  Moving from one 
position, back to that original position, is called making a cycle, so the period, is the time 
required to make one cycle.  Also, the number of cycles made in one second (Hertz, Hz), 
is the frequency.   
 
The nature of dynamic equilibrium is that the system or structure always vibrates as a 
combination of basic deflected shapes of the structure. These basic shapes are called the 
modes of vibration.  To see the modes of vibration of, for example, a guitar string, you 
pluck the string, then shine a strobe light on the string in such a way that the frequency of 
the light is the same as the frequency of the particular mode of vibration.  The string 
appears to be still but bent, though in fact it is still vibrating – a stationary wave.  Change 
the frequency of the strobe light to match that of the next mode of vibration of the string, 
and another shape appears.  This can go on ad infinitum.  The mode shape with the 
lowest frequency is called the fundamental mode of vibration, and that lowest frequency 
is likewise called the fundamental frequency.  It is important to note that the mode shape 
is a stationary wave.  The reason it is stationary is because when a system is disturbed it 
always tries to return to its undisturbed state.  This tendency is present in any kind of 
vibration problem and this is why in solving structural vibration problems, the solution is 
always found as a combination of the modes of vibration.   
 
This tendency manifests mathematically, in the solution of the dynamic equilibrium 
equations that govern the motion, as the solution to the well-known eigenvalue problem.  
Hence the modes of vibration are eigenvectors, and the modal frequencies are the 
corresponding eigenvalues.  Therefore solving the attendant eigen-problem is a sub-set of 
any total solution of a vibration problem (except for the simplest of cases).  
 
To complete the review of basic vibration phenomena, it must be mentioned that free 
vibration is always accompanied by damping.  This is the decay in the free vibration over 
time due to friction.  If there is too much damping, the structure will not oscillate and is 
called over-damped.  The amount of damping that just causes over-damping is called the 
critical damping. 
 
 
2. Uses of Structural Dynamics 
 
Building and civil engineering facilities are comprised of structures.  The main areas in 
which structural dynamics is applied are - earthquake engineering of building structural 
systems; earthquake engineering of building non-structural systems (e.g. machinery; 
suspended pipes, etc.); earthquake engineering of soils; earthquake engineering of infra-
structural elements (e.g. bridges; culverts; tanks; etc.); earthquake engineering of lifeline 
systems (e.g. embedded pipes, etc.); wind engineering of buildings, transmission towers, 
etc.; blast engineering of structures, and coastal engineering in terms of the effects of 
waves on shore line and off-shore facilities. 
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This presentation focuses on the area of earthquake engineering of building structural 
systems although the fundamental approaches and solutions apply to many of the other 
areas as well. 
 
In this area, the following dynamic analysis approaches are used, in descending order of 
regularity.  For this course, only the main aspects of modal analysis, and the MDOF 
Response Spectrum approaches are presented. 
 

APPROACH DESCRIPTION LIMITATION COMMENTS 
1. SDOF Response 
Spectrum - ELF Procedure 
 

The basic approach used in 
design codes; no time 
variation 

For regular structures only; 
requires the use of a 
correlation variable, Rw, 
for typical earthquake 
design. 

This is a special case of the 
MDOF Response Spectrum 
approach 

2. MDOF Response 
Spectrum 
 

A generalised version of 
the above.  

For irregular structures;  
requires the use of a 
correlation variable, Rw 

Derived from modal 
analysis but by focusing on 
peak values; very useful 
for a wide range of 
building design 
problems 

3. Modal Analysis Time 
History 

Uses the property of 
orthogonality to separate 
the motion into a set of 
independent motions 

Linear.  Analytical 
solutions only available for 
simple forcing functions 
but not earthquake 
excitation. 

Provides results for any 
time, t, during the 
disturbance. 

4. Direct Integration - 
Linear Elastic 
 

The governing equations 
involve linear constitutive 
relations and are solved by 
numerical integration 

Linear, but can solve for 
more complex forcing 
functions 

Can be used with modal 
analysis.  Also provides 
results for any time, t, 
during the disturbance. 

5. Direct Integration - Non-
linear 
 

The governing equations 
are non-linear since they 
require non-linear 
constitutive relations;   
solved by numerical 
integration 

More computer intensive 
since it requires an 
optimisation solver 

Most accurate of the 
deterministic approaches; 
rapidly gaining prominence 
for performance-based 
design due to improved 
computer power/cost. 

6. Probabilistic 
 

The governing equations 
are probabilistic 

The reliability estimates 
are not absolute but 
relative hence can only be 
used for comparing designs 

Can be linear or non-linear.  
Used by researchers and 
code developers. 

 
 
 
3.0 The Horizontal Vibration of a SDOF Structure 
 
A SDOF system is simply a representation of the structure as a single lumped-mass that 
can only move one way.  Hence it is called a single degree of freedom (SDOF) system.  
A building modelled in this way where the mass moves sideways is called a shear frame.  
This system embodies most of the concepts associated with the engineering mathematics 
of vibration.  It is also a necessary introduction to modal analysis since modal analysis 
works by separating the structure into a set of separate SDOF's. 
 
 
 
 
 
 
 
 
 
 
 
 
According to d'Alembert's principle,  
 
FI + FD + FS = F(t) 
 
Where FI = inertial force 

FD = damping force 
FS = force resisted by spring  

F(t) 

v 

C 

M 

K 

F(t) FI = M(d2v/dt2) 

FS = Kv 
FD = C (dv/dt) 
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Hence, 
 
M(d2v/dt2) + C (dv/dt) + Kv = F(t)      (1) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
For ground acceleration, the inertia force on the lumped mass is with respect to the total 
motion such that, 
 
FI = M(d2v/dt2 + d2vg/dt2) 
 
Therefore with respect to the forces on the lumped mass and hence in terms of the 
relative motion of the structure, eq(1) becomes, 
 
M(d2v/dt2 + d2vg/dt2) + C (dv/dt) + Kv = 0, or 
 
M(d2v/dt2) + C (dv/dt) + Kv = -Md2vg/dt2

     (2) 
 
Eq (2) is the governing equation of a structure under ground acceleration modeled as a 
SDOF shear building. 
 
It is one of the most fundamental governing equations of structural dynamics.  Now v and 
vg are functions of time.  Therefore, the various kinds of structural SDOF dynamics 
problems encountered are simply due to the definition of vg as it varies with time:  
 
When, 
 
vg = 0, we get the free body problem 
vg = a simple harmonic function such as v0 sin ωt, we get the classic equations of damped 
vibration which mathematically displays the central features of resonance, over-damping 
etc. 
vg = any general function, we get the general solution of any damped vibration problem.  
This solution is called the Duhamel or convolution integral.  The solution of these cases 
follow. 
 
3.1 Free Vibration - Transient Ground Acceleration 
 
The free vibration problem is also called the transient response problem.  This is because 
just after t=0, when the ground acceleration begins, regardless of the type of ground 
acceleration, this initial value is like an impulse acceleration which the system responds 
to as a free vibration superimposed on the subsequent ground acceleration.  The effect 
gradually fades so is called the transient response.  After fading away, the response is 
called the steady-state response. 
 
If no ground motion is applied to an SDOF system without damping, eq(2) is simplified 
to, 
 
M(d2v/dt2) + Kv = 0      (3) 
 

Vt = total motion 

V = relative motion

Vg = ground motion 
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Simpler solutions tend to be obtained if trigonometric functions are used to solve (3) for 
the displacement v.  Since the displacement of the mass occurs along a straight line, the 

unit circle concept shows how this is achieved. 
 
 
Consider the unit circle with the radius rotating anti-clockwise ω 
times per second.  The displacement is the horizontal projection 
of the unit radius.  The projection follows the radius as it rotates 
such that when the radius is at 0 deg, the projection length is the 
same as the radius (=1),  and when the radius is at 90 deg, the 
projection length is zero.  In other words, as the unit radius 
rotates, the end of the projection length (the dot) vibrates. 
 
Since the unit radius makes ω revolutions per second this implies 
that the radius rotates ωt times in t seconds.  But for one 
revolution θ is 2π and the time taken is the period, T. Hence,  
 
ωT = 2π 
 

ω is therefore called the natural circular frequency and is of unit radians per second.    
 
Substituting the harmonic relation, v = A cos ωt + B sin ωt, shows that this is the general 
solution to (3).  From the trig identity Acosθ - Bsinθ = Ccos(θ + α), it can be shown that 
the peak value or amplitude of v is (A2+B2)1/2.   Also, ω = √(K/M), hence T = 2π/ω = 2π 
(M/K)1/2. 
 
The constants A and B are determined from the initial conditions.  At t = 0, the constants 
A and B are v(0), [(dv/dt)t=0]/ω , respectively.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If viscous damping is present in the system, (3) becomes, 
 
M(d2v/dt2) + C (dv/dt) + Kv = 0    (4) 
 
Dividing by M, we get, 
 
d2v/dt2 + 2ξω(dv/dt) + ω2v = 0    (5) 
 
where 2ξω = C/M 
 
The solution of (5) is, 
 
v = A exp (λ1t) + B exp (λ2t) 
 
where λ1, λ2 = ω[ - ξ ± (ξ2 - 1)1/2 ]    (6) 
 
(6) indicates that the solution changes form according to the value of ξ. 
 
If ξ2 < 1, 

1

θ 

Cos θ 

v(0) 

(dv(/dt)t=0 

T = 2π/ω 

t 

v(t) 
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v = C exp (-ξωt) sin (ωDt + θ)     (7) 
 
where C = (A2 + B2)1/2 θ = tan-1 A/B 
 
ωD = (1 - ξ2 )1/2 ω      (8) 
 
For initial conditions of v = 0 and (dv/dt)t=0 at t=0, (7) becomes 
 
v = [(dv/dt)t=0/ωD] exp (-ξωt) sin ωDt     (9) 
 
 
ωD is called that the damped circular frequency.  The portion of the equation before the 
sine of (7) and (9), indicates that the system experiences a decaying oscillation with t. 
 
If ξ2 > 1, the system does not oscillate since the effect of the damping overshadows the 
oscillation (over-damping). 
 
The condition ξ2 = 1 indicates a limiting value of damping at which the system loses its 
vibratory characteristics; this is called critical damping.  From (5), the critical damping 
constant,  
 
Ccr = 2ωM = 2(MK)1/2      (10) 
 
ξ is defined in terms of Ccr as,  ξ = C/Ccr.  Hence ξ is called the fraction of critical 
damping, or the damping ratio.  Typical values of ξ are 5% for reinforced concrete, and 
2% for steel. 
 
From (7) we get a means for experimentally determining ξ.  It can be shown that for 
successive vibration amplitudes of a damped system, 
 
ln (vn/vn+1) ≈ 2πξ.  This is called the logarithmic decrement. 
 
 
3.2 Forced Vibration  - Steady-State Ground Acceleration 
 
If the system is subjected to a sinusoidal ground motion, then after the aforementioned 
transient response has dissipated, the steady-state response is obtained.   
 
vg = α0 sin ω' t   , where ω' is the frequency of the forcing function, 
 
Hence, 
 
d2v/dt2 + 2ξω(dv/dt) + ω2v = - α0 sin ω' t   (11) 
 
The solution of (11) is the sum of the complimentary solution (7), and the particular 
solution.  The particular solution is, 
 
v = C1 sin ω' t  + C2 cos ω' t       (12) 
 
Substituting (12) into (11), 
 
v = - (α0/ω2) [ (1 - β2)2 + 4ξ2β2]-1/2 sin (ω' t  - θ)  (13) 
 
where θ = tan-1 (2ξβ/(1 - β2))     
 
β = ω' /ω 
 
It is instructive to investigate the effect of β on the increase in the load, called the 
amplification, due to the influence of the inertia.   
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A static external force equal to the inertial force (Mα0) makes the system deform by  
Mα0/K = α0/ω2.  This deflection, labeled vst is, 
 
vst = α0/ω2 
 
Hence according to (13) the ratio of the dynamic to static deflection, called the dynamic 
displacement amplification factor, is 
 
Dd = |v/vst| = [ (1 - β2)2 + 4ξ2β2]-1/2 
 
When Dd is plotted as a function of the frequency ratio β, and for different ξ, we get 
Appendix Fig 1. 
 
Note that as ω' approaches ω the amplitude increases; this tendency is greater for smaller 
values of ξ.  The condition at which ω' = ω, or β = 1, is called resonance.   
It was stated earlier that the absolute acceleration is d2v/dt2 + d2vg/dt2, hence from (2), 
 
d2v/dt2 + d2vg/dt2 = - ( ω2 v + 2ξω (dv/dt) )      (14) 
 
Substituting (13) and its first derivative into (14) we get  
 
d2v/dt2 + d2vg/dt2 = α0[ (1 - β2)2 + 4ξ2β2]-1/2 [1 + 4ξ2β2]1/2 sin[ ω' t - (θ - θ0)]      (15) 
 
where θ0 = tan -1  2ξβ.  Thus the ratio of the response acceleration to the ground 
acceleration is, 
 
Da = | (d2v/dt2 + d2vg/dt2)/d2vg/dt2| = [ (1 - β2)2 + 4ξ2β2]-1/2 [1 + 4ξ2β2]1/2   (16) 
 
Da is called the dynamic acceleration-magnification factor and when Da is plotted as a 
function of the frequency ratio β, and for different ξ, we get Appendix Fig 2.  At β = √2 
Da is unity regardless of the values of ξ, and Da becomes smaller than unity in the range β 
> √2. 
 
 
Forced Vibration  - Non-Steady-State Ground Acceleration 
 
For the case where the ground acceleration is an arbitrary general function, as is the case 
in real earthquakes, the solution is obtained by a technique in which the ground motion is 
considered to correspond to the sum of a series of impulsive loads.  However, an 
impulsive load problem is the same as a free vibration problem but with different initial 
conditions. 
 
The effective external force caused by arbitrary ground motion is, 
 
F(t) = -Md2vg/dt2         (17) 
 
Taking F(t) as an impulsive load applied during an infinitesimal time interval dτ, and 
from the condition that the momentum Mdv/dt equals the impulse F(τ) dτ, 
 
Mdv/dt = F(τ) dτ. 
 
This means that due to the impulse during time change dτ, the velocity changes by  
F(τ) dτ/M.  This describes initial conditions that at t = τ, v = 0, and dv/dt = F(τ) dτ/M. 
 
Through this, we can utilise the previous solution for the case of damped free vibration 
given by (9).  But since (9) is for t = 0, we must replace t in (9) with t - τ.  Also, 
 
dv/dt = [F(τ)/M] dτ , but from (17) we get 
 
         = -(d2vg/d2τ) dτ. 
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Making these substitutions in (9) we get, 
 
 
 v(t) = [-(d2vg/d2τ) dτ/ωD] exp [(-ξω(t - τ) sin ωD(t - τ)]   (18) 
 
However, (18) is the solution to the system under the ground motion as an impulsive 
load.  Hence when F(t) is applied continuously, the solution is obtained by integrating 
(18).  Therefore, 
 
v(t) = - (1/ωD)  ⌠t [-(d2vg/d2τ) ] exp [(-ξω(t - τ) sin ωD(t - τ)] dτ  (19) 
   ⌡0 
This equation is called the Duhamel integral.  It is in the class of the convolution 
integrals. 
 
Since ξ << 1 in most building structures,  (1 - ξ2 )1/2 ≈ 1, so the undamped frequency can 
replace the damped frequency, 
 
v(t) ≈ - (1/ω) ⌠t [-(d2vg/d2τ) ] exp [(-ξω(t - τ) sin ω(t - τ)] dτ  (20) 
           ⌡0 
 
The advantage of this is that it enables a simple relationship between the displacement, 
velocity and acceleration, with great practical application, as will be seen shortly. 
 
As for the displacement, the velocity is approximately given as, 
 
dv(t)/dt ≈ - (1/ω) ⌠t [-(d2vg/d2τ) ] exp [(-ξω(t - τ) cos [ω(t - τ) + Ψ] dτ (21) 
      ⌡0 
 
where  Ψ = tan -1 ξ/(1 - ξ2 )1/2 
 
Also, the absolute acceleration is given, when neglecting the second term on the right 
side of (14), by 
 
d2v/dt2 + d2vg/dt2 ≈ ω ⌠t [(d2vg/d2τ) ] exp [(-ξω(t - τ) sin ω(t - τ) dτ  (22) 
             ⌡0 
 
3.3  Response Spectra 
 
The aforementioned equations are of interest for the design of earthquake resistant 
structures by performance-based approaches but not for the design of such structures by 
typical design office methods.  Design office methods are based on Statics, so a prime 
interest is the ability to use these equations under conditions that can be considered to be 
equivalent to Statics.  Therefore, this interest becomes the search for the maximum 
response quantities, rather than the entire response from t=0.  Through (20) to (22) this is 
possible.   
 
The relative displacement v reaches its maximum when in (20), the integral takes the 
maximum value.  With the maximum value of this quantity defined as Sv we have, 
 
Sd = (1/ω) Sv = vmax        (23) 
 
Sd is called the spectral displacement. 
 
 
 
Sv = max value of  ⌠t [-(d2vg/d2τ) ] exp [(-ξω(t - τ) sin ω(t - τ)] dτ  (24) 
         ⌡0 
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In structures with damping Sv is not identical to the maximum velocity response, but is 
very close to it.  Therefore Sv is considered equal to the maximum velocity and is called 
the spectral pseudo velocity. 
 
According to (24) and (22), 
 
Sa = ωSv         (25) 
 
Sa is called the spectral pseudo acceleration. 
 
Hence from (23), 
 
Sa = ω2Sd         (26) 
 
The earthquake load applied to the structure, the maximum base shear Vmax, 
 
Vmax = MSa         (27) 
 
Therefore by knowing Sd the design load is easily known. 
 
By using (23) to (26), Sa, Sd, and Sv for an SDOF system subjected to an earthquake 
motion can be drawn with respect to each particular combination of natural period and 
damping coefficient.  This gives, in one single graph, the maximum response that the 
structure will experience.  Such a graph is called a response spectrum and so the graphs 
of Sa, Sd, and Sv versus T are called the acceleration response spectrum, the displacement 
response spectrum, and the velocity response spectrum, respectively. 
 
For convenience, these spectra are sometimes put on one logarithmic graph with 3 y-axes 
rotated relative to each other.  Such a combined graph is called a tripartite plot.  An 
example is shown in the Appendix. 
 
As a single ground acceleration graph is necessarily jagged, a response spectrum graph 
for a single earthquake is also jagged.  By considering many ground acceleration records, 
many spectra are assembled and statistical techniques applied to smooth out the jagged 
lines.  This is very useful for preparing spectra for use in design and seismic design codes 
specify such spectra and rules for their construction.  Also, certain general characteristics 
become apparent by the smoothing.  These general characteristics of the spectra are 
shown below. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Natural Period, T 

Sa

Sv

Sd
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4.0 HORIZONTAL VIBRATION OF A MDOF STRUCTURE - THE SHEAR 
BEAM MODEL 

 
For earthquake-resistant design, building codes require that the magnitude and 
distribution of the earthquake forces on a structure that is vertically irregular in terms of 
mass or stiffness, be determined by dynamic analysis.  If this is the only form of 
irregularity, then modeling the structure in terms of plane frames, walls (or dual systems) 
is appropriate. In such cases, it is commonplace to model the mass of the structure as a 
set of lumped-masses with one at each floor.  Since the model is 2D there is then one 
DOF per floor which is translational only.  Such a model of the structure is called a shear 
beam model. 
 
To maximise the economy of processing the calculations, it is desirous to solve the 
MDOF vibration problem by utilising the solutions of the SDOF problem.  This is readily 
accomplished using the Modal Analysis Technique which is based on the following steps 
for earthquake vibration: 
 
1. Determine the modes of vibration of the system. 
2. Represent the displacement of the masses as the sum of the modal displacement times 

a Y vector, called the general co-ordinate vector, or the normal coordinates. 
3. Make the system of equations independent of each other so that the system becomes a 

set of independent SDOFs.  This is done by taking advantage of the fact that the 
solution to the MDOF free vibration problem, i.e. the  mode shapes, are orthogonal. 

4. Use the solutions to SDOF problems to determine the response for each mode.  This 
can give a time history response for each mode.  Alternatively, use response spectra to 
determine the maximum responses.  Since the modes of vibration for each mass do 
not peak at the same time, use a statistical technique to estimate the peak at each dof 
(each mass).  The square-root-sum-of-squares (SRSS) formula is regularly used for 
this. 
 

It must be pointed out that since step 2 is essentially superposition, modal analysis is only 
valid for linear systems.   
 
In the following, we implement these steps but focus on the salient results of the steps.  
The student is referred to standard texts for the detailed derivations. 
  F2(t) 

FS2 = K2(v2 – v1) FD2 = C2 (dv2/dt- dv1/dt) 

F1(t) 

FS = K1 v1 
C1 (dv1/dt) 

F2(t) 
v2 

C2 

M2 

K2 

F1(t) 

C1 

M1 

K1 

v1 

FI2 

C2 (dv2/dt- dv1/dt) 

FI1 

FK2(v2 – v1) 

FD1 FS1 
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From the free body diagram, the governing equations of motion for a MDOF system can 
be represented as: 
 
[M]d2[v]/dt2 + [C][v] + [K][v] = -[M][1]d2vg/dt2     (1) 
 
This is analogous to the SDOF equation but with the mass, damping and stiffness 
constants now replaced by (n x n) matrices.  [1] is the (n x 1) unit vector and is required 
to ensure that the right-hand side of (1) is (n x 1). 
 
For an undamped system in free vibration, it can be shown that (1) is solved by 
 
[v] = [v^] sin ωt         (2) 
 
This results in, 
 
[K][v^] - ω2 [M] ][v^] = [0]        (3) 
 
(3) is called the frequency equation and is an eigenvalue system with respect to the 
circular frequency ω.  When the system has n degrees of freedom, n natural frequencies 
are obtained from (3).  Each frequency results in a different mode shape.  For a 2-DOF 
system  we get, 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Solution of (3) is typically carried out by computer except for the simplest of cases.  
From (3), it is the ratio of the displacements v^2/v^1 that are uniquely determined for each 
ω, and not the values themselves.  
 
Therefore since it is the relative values that are important, it is customary to scale [v^] is 
such a manner that the displacement corresponding to the top story is taken as unity.  If 
the system has N dof, the nth modal shape (remembering that each modal shape has N 
dof), is written as [φn] defined as, 
 
  ⎡φ1n ⎤ 
  |φ2n  | 
[φn]       =  |   .   |     ≡      
  |   .   | 
  ⎣φNn ⎦ 
 
 

⎡v^1n  ⎤ 
  | v^2n   | 
         (1/v^kn ) |     .    |    
  |   .     | 
  ⎣v^Nn ⎦ 
 
Note that each φn is just the scaled displacement solution for the undamped free vibration 
of the structure.  The assembly of all the φn results in a square matrix of all the n mode 

v^21 

v^11 

v^22 

v^12 

Mode shape 1 for 
frequency ω1 

Mode shape 2 for 
frequency ω2 
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shape vectors.  This matrix is called the modal shape matrix.  Rows are dof’s, and 
columns are modes. 
 
[φ] =  [φ1  φ2 ..... φN]  = ⎡ φ11  φ12 ..... φ1N  ⎤ 
               |  φ21  φ22 ..... φ2N   | 
                          | .   .   .    .   .   .   .  | 
                          ⎣ φ21  φ22 ..... φNN   ⎦ 
 
The objective is to separate the modal responses, or make them independent of each other 
for solution.  If two vectors are independent of each other, the coefficient matrix in their 
matrix representation is a diagonal matrix.  As an arbitrary example, if we have two 
simultaneous equations, 
 
3x + 0y = 4  and  
0x + 7y = 5, then clearly x = 4/3 and y=5/7.  As the equations are separate the solutions 
are simple as we have sets of one variable with one unknown.  Putting this in matrix 
form, 
 
 ⎡3  0  ⎤   ⎡ x  ⎤   =  ⎡ 4 ⎤             or,      [A] [Y] = [B]     (4) 
 ⎣0  7  ⎦   ⎣ y  ⎦       ⎣ 7  ⎦    
 
Hence the coefficient matrix is seen to be a diagonal matrix.  Therefore to use this 
approach we must introduce a new vector referred to previously as the Y vector and 
represented by the x,y or [Y] in the above equation.  So we transform [v] in equation (1) 
as, 
 
[v] = ΣN [φn] Yn         (5) 
 
or  [ φ ] [Y]   =  [v]         (6) 
 
It is from (6) that this dynamic analysis approach gets its name - Modal Superposition.  
As the [ φ ] matrix is (n x n) and the [Y]matrix is (n x 1), the [v] matrix is (n x 1).  
Because the Modal Analysis method uses superposition, it is only applicable to linear 
behavior.  Now to make this procedure work, we must make (1) take a form like (4).  
This would happen if [ φ ] is orthogonal because for an orthogonal matrix [ φ ], pre and 
post-multiplying a matrix by [ φ ]T and [ φ ] respectively, results in  a diagonal matrix.   
Since [ φ ] satisfies the eigenvalue equation given by (3) above, it is orthogonal hence can 
be used to diagonalize [M], [C], and [K] on the left-hand side of (1).  Therefore by 
substituting (6) in (1) and pre-multiplying by [ φ ]T we get, 
 
[ φ ]T [M] [ φ ] d2[Y]/dt2 + [ φ ]T [C] [ φ ] d[Y]/dt + [ φ ]T [K] [ φ ] [Y] = - [ φ ]T [M] [1] ag (7) 
 
The diagonalized form of [M], [C] and [K] are therefore given by, [Mdia] = [ φ ]T [M]  
[ φ ], [Cdia] = [ φ ]T [C] [ φ ], and [Kdia] = [ φ ]T [K] [ φ ] resulting in, 
  
 [Mdis] d2[Y]/dt2 + [Cdia] [Y]/dt + [Kdia] [Y] = - [ φ ]T [M] [1] ag    (7b) 
 
Let [α] = ( [ φ ]T [M][1] ) / ([ φ ]T [M] [ φ ] ), where [α] is an (n x 1) matrix.  Therefore, 
(7b) becomes 
 
[Mdis] d2[Y]/dt2 + [Cdia] [Y]/dt + [Kdia] [Y] = -  [Mdia] [α] ag    (7c) 
 
Dividing by [Mdia] and noting that the left-hand side of (7c) are independent equations,  
 
d2Yn/dt2 + 2 ξn ωn  dYn/dt + ωn

2 Yn = - [α] ag = - (ΣN Mi φi)/( ΣN Mi φi
2) ag   (7d) 

 
Ln = ΣN Mi φi           (8) 
 
Mn

* =  nth mode Generalised Mass = ΣN Mi φi
2

      (9) 
 
αn =   n th mode Participation factor   =  Ln/Mn

*     (10) 
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nth mode Generalised Mass: 
 
“n” refers to the “n”th mode and “i” refers to the “i”th floor.  αn is called the nth mode 
participation factor. Sometimes Ln is called the participation factor. This is the case when 
the scaling of the mode shape is done such that the denominator of (10) is unity, and the 
resulting mode shapes are called “mass normal”.  This approach is sometimes presented 
in the textbooks and is felt to make the calculations easier to perform.  In the presentation 
above, the scaling was done simply by dividing by v^kn.   
 
Meff, n = αn Ln = (ΣN Mi φi)2 /( ΣN Mi φi

2)      (11) 
 
Meff, n is called the effective mass of the structure involved in the nth mode and is a 
parameter that is used in building codes to indicate the minimum number of modes that 
must be considered in the calculation.  Recalling equation (7d), 
 
d2Yn/dt2 + 2ξnωn dYn/dt + ωn

2 Yn = -αn ag      (12) 
 
This equation is not yet identical to the SDOF equation of motion, but it is the intention 
of modal analysis to use the SDOF solutions to solve the MDOF problem. 
 
By setting, 
 
Yn = αn Yno          (13) 
 
(12) becomes, 
 
d2Yno/dt2 + 2ξnωn dYno/dt + ωn

2 Yno = -ag      (14) 
 
4.1 Time History Analysis 
 
This equation represents the culmination of the process of separating the equations of the 
MDOF problem into a set of n independent SDOF problems with already known 
solutions, and combining the result in proportion to the participation of the nth mode.  
According to (5) the displacements can be expressed as, 
 
[v] = ΣN [φn] αn Yno         (15) 
 
Hence the velocities are, 
 
d[v]/dt = ΣN [φn] αn dYno/dt        (16) 
 
and the absolute accelerations are, 
 
d2[v]/dt + [1] d2vg/dt= - ΣN [φn] αn ωn

2Yno      (17) 
 
Therefore for time-history analysis of a MDOF structure subjected to a ground 
acceleration, the solution is obtained via (15) to (17) and the appropriate SDOF solution. 
 
4.2 Response Spectrum Analysis 
 
If only maximum values are required, response spectra can be utilised as for the SDOF 
problem.  Then for each mode n, 
 
Sdn = Svn/ωn          (18) 
 
vn = φn αn Sdn          (19) 
 
d2vn/dt2 = ωn

2 vn         (20) 
 
qn = Mn d2vn/dt2          (21) 
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Sdn and Svn are the spectral displacement and velocity respectively, and (19) to (21) are 
the nth mode displacement, acceleration and inertia force respectively.  For each dof (each 
mass), these quantities are then combined by statistical techniques with the most common 
being the SRSS combination expressed as, SRSS of the quantity = √ (ΣN quantity 2).  This 
is required since the modes of vibration for each mass do not peak at the same time. 
 
4.2.1 Practical Application of Modal Response Spectrum Analysis to Earthquake 

Building Analysis 
 
Dynamic analysis of a building using the modal analysis method as presented above is 
required if the building is vertically irregular in terms of mass and stiffness.  A 
quantitative means of determining if a building has this type of irregularity is as follows: 
 
1. Calculate the lateral inertia forces on the building at each floor as per the code ELF 

formula for vertical distribution of the base shear, V.  The formula uses the height of 
each floor, hi. 

2. Calculate the storey shears. 
3. Compute lateral displacements xi at each floor under the forces from 1. 
4. Substitute the xi from 3 in place of the hi in 1. 
5. Re-calculate the story shears. 
6. Compare the storey shears from 2 with those from 5 for each floor. 
7. If for any floor the difference is more than 30%, then a dynamic analysis must be 

done. 
 
The principle of this procedure is due to the fact that the formula is based on the ratio of 
floor variable to the sum of the same variable for all floors. 
 
If it is determined that a dynamic analysis is required, the most widely used approach for 
design purposes, is the modal response spectrum analysis method with the main 
equations being (18) to (21).  The overall procedure of the modal response spectrum 
analysis method is: 
 
1. Model the structure as a MDOF shear building and determine the [K] and [M] 

matrices. 
2. By using an eigenvalue solver or otherwise, obtain the modal circular frequencies. 
3. By substitution in (3), determine the modal shape for each vibration mode and 

assemble the modal shape matrix. 
4. Convert the modal frequencies from circular (ω, radians per second) to rectilinear (f, 

Hertz) by dividing by 2π 
5. For each mode shape, and from the response spectrum, determine Svn or Sdn.  This 

may require conversion of the result from 4, to the modal period (T = 1/f, seconds).  
6. For each mode shape determine: Ln (eq 8); the generalised mass M*

n (9), and αn (10). 
7. For each mode shape, and for each floor per mode shape, determine the displacement 

(eq (19)), the acceleration (20), and the inertia force (21). 
8. For each floor, combine the results of 7 for each mode shape by the SRSS 

combination. 
 
 


