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CE 31B YIELD LINE ANALYSIS

1.0 Introduction

Yield line analysis is an analysis approach for determining the ultimate load capacity of
reinforced concrete slabs and was pioneered by Johansen.  The Yield Line Method is
closely related to the Plastic Collapse or Limit analysis of steel frames, and is an Upper
Bound or Mechanism approach.

The solution for the slab in question is presented as a load, expressed as a function of the
moment (or moments) of resistance of strips of the slab, the geometry of the slab, and the
location of the yield lines.  Therefore, the yield line method is well suited to the
reinforced concrete design objective of determining the required reinforcement.
However, the method gives no information on cracking or deflection under service loads.

The main advantage of this method over the conventional code-based approach to slab
analysis and design is its ability to cater for irregular slabs, slabs with uncommon support
conditions, and slabs with uncommon loading.

Parallel to this method is the Hillerborg Strip Method which is a Lower Bound approach
and is more laborious.  This approach is outside the scope of this presentation but is
mentioned as a source for further reading and research by the student.

The following presentation of the yield line method is introductory in that only the central
concepts, and its application to simple cases are discussed.

2.0 Assumptions and Conventions

a. The slab is under-reinforced, and shear failure, bond failure and over-reinforced
failure are prevented.

b. The moment-curvature relationship is idealised as the elastic-perfectly plastic
curve with a long horizontal portion.

c. The assumed collapse mechanism is defined by a pattern of yield lines along
which the reinforcement has yielded.

d. The location of the yield lines depends on the support conditions, and the loading
conditions.

e. The yield lines divide the slab into several regions called rigid regions which are
assumed to remain plane, so that all rotations take place in the yield lines only.

f. Yield lines are straight and they end at a slab boundary.
g. A yield line between two rigid regions must pass through the intersection of the

axes of rotation of the two regions; the supports form the axis of rotation.
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h. Yield lines are drawn in accordance with a certain convention - a solid line
(              ) represents a positive yield line caused by a sagging yield moment, so
that the concrete cracks in tension on the underside of the slab; a broken yield line
(                 ) represents a negative yield line caused by a hogging yield moment so
that tensile cracking occurs on the topside of the slab.

i. The convention for support conditions is as follows: single hatching represents a
simply supported edge; double hatching represents a built-in edge or continuity of
the slab over the support, and no hatching represents a free edge.

In the most general case for the arrangement of the slab reinforcement, the reinforcement
will consist of two different bands of rebars arbitrarily inclined to each other, and
arbitrarily inclined to the yield lines, where each band consists of both top and bottom
reinforcement.  This enables the designer to investigate a wide range of possible solutions
and a wide variety of support types especially angles that define irregular slabs.

However for our purposes, we will consider only the case where the reinforcement is:

1. Of a maximum of two bands at right angles to each other
2. The two bands are of the same steel rods and distribution

In this case, the slab is said to be isotropically reinforced.  As such, due to this
reinforcement pattern, the yield moment of resistance per unit width of the slab is
represented by the letters, m for the bottom steel, and m' for the top steel, and is the same
for each band of reinforcement.  Therefore, the isotropically reinforced slab looks like
this:

For isotropically reinforced slabs, the reinforcement is usually parallel (and
perpendicular) to the predominant support line.  Also, in the conventional notation, the m
lines, called the moment axes, are perpendicular to the reinforcement, as shown above.

Since the two layers of reinforcement at the top or bottom of the slab cannot be at the
same effective depth, then strictly speaking, m1 and m2 are not identical.  However, this is
ignored in the analysis.

Note that in an isotropically reinforced slab, the reinforcement is nevertheless at an angle
to the yield line.
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3.0 Energy Dissipation in a Yield Line

Since this is an upper bound approach, it is imperative to determine the energy absorbed
by the reinforcement along the yield line.  By consideration of the geometry of the
problem, a simple formula becomes apparent.  This formula can be expressed as:

The energy dissipation in a yield line of length l due to a single band of reinforcement
crossing the line, is equal to -  the sum of the product of m, the projection of l onto the
support axis, and the rotation of the rigid region about that axis, for the two adjacent
axes.

This can be derived for any arrangement of slab and a yield line as is shown in the
following example (note that the yield line is vertical):

The yield line ab divides the slab portion dfbgea into the two rigid portions A and B.  A
rotates θA about support axis eg and B rotates θB about support axis df.  The rotations are
represented by vectors following the right-hand-corkscrew rule.

If m is the moment of resistance per unit length, then the energy dissipation per unit
length of the yield line
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= m ( θnA + θnB )

= m θA cos αA + m θB cos αB

For the length l of the yield line,

= m θA l cos αA + m θB l cos αB

= m θA lA + m θB lB

where lA and lB are respectively the projections of l on the axes of rotation for the rigid
regions A and B.  Hence, the energy dissipation for length l of the yield line is,

= m ∑ (projection of l on an axis) (rotation of rigid region about that axis)

4.0 The Optimum Location of the Yield Line Pattern

Remember from plastic collapse analysis of steel frames by the upper bound approach,
since we have assumed a mechanism, the yield condition of collapse is not involved so
there is no guarantee that the assumed mechanism is the true collapse mechanism.  We
must investigate other mechanisms to search for the minimum collapse load.

Likewise, for yield line analysis we have two possibilities, called the arithmetic approach,
and the algebraic approach.  In the arithmetic approach, we examine a series of
alternative yield line patterns in search of the lowest collapse load, as is done for steel
frames.

But in the algebraic approach, the yield line pattern is expressed as a function of a
variable.  We then use the condition that when the work equation is a maximum, the
derivative of the equation with respect to the yield line position variable must be zero.
We solve this derivative equation which is set to zero, for the position variable, and back
substitute in the work equation.  This approach will be used in the following example.

5.0 Yield Line Analysis Procedure

The following is for the case of slabs under uniformly distributed loads.  The core of the
procedure is the application of the following work equation:

Energy due to external loads = Energy dissipated in the yield lines

Σ W δ = Σ m θ l (1)

where W is the applied load,
δ is the deflection
m is the moment of resistance per unit length of the slab due to the rebar
l is the length of the yield line.
The summation Σ is applied for each yield line and the rigid regions about the line.

Step 1. Assume a yield line pattern.
Step 2. Since the pattern defines the locations of the rigid regions, determine the

centroid and area of each rigid region
Step 3. Determine the deflection of each rigid region by considering the centroid of the

region.  Note that as the slab is 2-way spanning, the components of the deflections
in each direction must be determined.; also, for small angles tan θ = θ.

Step 4. Noting that W = wA, from 2 and 3 determine the left hand side of eq (1).
Step 5. Determine the right hand side of eq (1) by using the formula for the energy

dissipation in a yield line.
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Step 6. If the yield line pattern is not expressed as function of a position variable, then
solve for w, and repeat steps 1 to 6 until no other patterns are possible, and use the
lowest w as the failure load.

Step 7. If the yield line pattern is expressed as a function of a position variable, use the
approach in section 4 to get the minimum w.

6.0 Yield Line Analysis Example

A 6m square corner panel of a reinforced concrete floor slab is simply supported on the
outer edge on steel beams, and continuous over the interior beams.  The ultimate load is
12.4 kN/m2.  Determine the required ultimate moment of resistance if the slab is to be
isotropically reinforced.

Work done by the external loads is the sum of the load through the centroid of each rigid
region, times the deflection of the rigid region at the centroid.

From the deflection diagrams, all the centroids have the same deflection of xθ/3, hence
the total external work done,

E = wa2 xθ/3 (a)

The work done in the yield lines, I, from section 4 and taking the projections, we get,

I = 2maxθ/(a-x) + 2mxθ + 2m(a-x)xθ/(a-x) + 2m(a-x) θ + 2mx.xθ/(a-x) (b)

  = 2mθa(a+x)/(a-x)

Equating (a) and (b) and solving, we get

m = wax(a-x)/[6(a+x)] (c)

The minimum value of m is given when dm/dx = 0 = 6(a+x)wa(a-2x)-wax(a-x)6, or

x2 + 2ax – a2 = 0

Hence x = 0.414a.
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Substituting in (c) and for a = 6m, we get

m = 0.0286 wa2 = 12.76 kNm/m


